é ,ch01.12472 Page 3 Thursday, April 19, 2001 12:58 PM

A Gentle Introduction
Jor Nomn-Programmers

I'm going to teach you to talk to Flash.

Not just to program in Flash but to say things to it and to listen to what it has to
say in return. This is not a metaphor or simply a rhetorical device. It’s a philosoph-
ical approach to programming.

Programming languages are used to send information to and receive information
from computers. They are collections of vocabulary and grammar used to commu-
nicate, just like human languages. Using a programming language, we tell a com-
puter what to do or ask it for information. It listens, tries to perform the requested
actions, and gives responses. So while you may think you are reading this book in
order to “learn to program,” you are actually learning to communicate with Flash.
But, of course, Flash doesn’t speak English, French, German, or Cantonese. Flash’s
native language is ActionScript, and you're going to learn to speak it.

Learning to speak a computer language is sometimes considered synonymous with
learning to program. But there is more to programming than learning a language’s
syntax. What would it be like if Flash could speak English—if we didn’t need to
learn ActionScript in order to communicate with it?

What would happen if we were to say, “Flash, make a ball bounce around the
screen?”

Flash couldn’t fulfill our request because it doesn’t understand the word “ball.”
Okay, okay, that’s just a matter of semantics. What Flash expects us to describe is
the objects in the world it knows: movie clips, buttons, frames, and so on. So, let’s
rephrase our request in terms that Flash recognizes and see what happens: “Flash,
make the movie clip named ball_one bounce around the screen.”

4~ ~4]e

é ,ch01.12472 Page 4 Thursday, April 19, 2001 12:58 PM

4 Chapter 1: A Gentle Introduction for Non-Programmers

Flash still can’t fulfill our request without more information. How big should the
ball be? Where should it be placed? In which direction should it begin traveling?
How fast should it go? Around which part of the screen should it bounce? For how
long? In two dimensions or three? Hmm . . . we weren’t expecting all these ques-
tions. In reality, Flash doesn’t ask us these questions. Instead, when Flash can’t
understand us, it just doesn’t do what we want it to, or it yields an error message.
For now, we’ll pretend Flash asked us for more explicit instructions, and reformu-
late our request as a series of steps:

. A ball is a circular movie clip symbol named ball.

. A square is a four-sided movie clip symbol named square.

1
2
3. Make a new green ball 50 pixels in diameter.
4. Call the new ball ball_one.

5

. Make a new black square 300 pixels wide and place it in the middle of the
Stage.

()

. Place ball_one somewhere on top of the square.
7. Move ball_one in a random direction at 75 pixels per second.

8. If ball_one hits one of the sides of the square, make it bounce (reverse
course).

9. Continue until T tell you to stop.

Even though we gave our instructions in English, we still had to work through all
the logic that governs our bouncing ball in order for Flash to understand us. Obvi-
ously, there’s more to programming than merely the syntax of programming lan-
guages. Just as in English, knowing lots of words doesn’t necessarily mean you’re
a great communicator.

Our hypothetical English-speaking-Flash example exposes four important aspects
of programming:

e No matter what the language, the art of programming lies in the formulation
of logical steps.

e Before you try to say something in a computer language, it usually helps to
say it in English.

e A conversation in one language translated into a different language is still
made up of the same basic statements.

e Computers aren’'t very good at making assumptions. They also have a very
limited vocabulary.

Most programming has nothing to do with writing code. Before you write even a
single line of ActionScript, think through exactly what you want to do and write

- ad

é ,ch01.12472 Page 5 Thursday, April 19, 2001 12:58 PM

Some Basic Phrases 5

out your system’s functionality as a flowchart or a blueprint. Once your program
has been described sufficiently at the conceptual level, you can translate it into
ActionScript.

In programming—as in love, politics, and business—effective communication is
the key to success. For Flash to understand your ActionScript, you have to get
your syntax absolutely correct down to the last quote, equal sign, and semicolon.
And to assure that Flash knows what you’re talking about, you must refer only to
the world it knows using terms it recognizes. What may be obvious to you is not
obvious to a computer. Think of programming a computer like talking to a child:
take nothing for granted, be explicit in every detail, and list every step that’s nec-
essary to complete a task. But remember that, unlike children, Flash will do pre-
cisely what you tell it to do and nothing that you don’t tell it to do.

Some Basic Phrases

On the first day of any language school you’d expect to learn a few basic phrases
(“Good day,” “How are you,” etc.). Even if you’re just memorizing a phrase and
don’t know what each word means, you can learn the effect of the phrase and can
repeat it to produce that effect. Once you've learned the rules of grammar,
expanded your vocabulary, and used the words from your memorized phrases in
multiple contexts, you can understand your early phrases in a richer way. The rest
of this chapter will be much like that first day of language school—you’ll see bits
and pieces of code, and you’ll be introduced to some fundamental programming
grammar. The rest of the book will build on that foundation. You may want to
come back to this chapter when you've finished the book to see just how far
you've traveled.

Creating Code

For our first exercise, we’ll learn how to add four simple lines of code to a Flash
movie. Nearly all ActionScript programming takes place in the Actions panel. Any
instructions we add to the Actions panel are carried out by Flash when our movie
plays. Open the Actions panel now by following these steps:

1. Launch Flash with a new blank document.
2. On the main timeline, select frame 1 of layer 1.
3. Select Window — Actions.

The Actions panel is divided into two sections: the Script pane (on the right) and the
Toolbox pane (on the left). The Script pane houses all our code. The Toolbox pane
provides us with quick access to the Actions, Operators, Functions, Properties, and

- ad

é ,ch01.12472 Page 6 Thursday, April 19, 2001 12:58 PM

6 Chapter 1: A Gentle Introduction for Non-Programmers

Objects of ActionScript. You'll likely recognize the Basic Actions, shown in
Figure 1-1, from prior Flash versions.

F Frame Actionz]|

'I -|| Frame Actions

o GaTa Ezct+go
Actions 3 Flay Esc+pl
Operator: 3 Stop Esc+st
Functionz 3 Toggle High Quality Ezc+tg
Properties 3 Stop All Sounds Esctss
Objects > Get URL Esc+qu
FSCommand Ezctfz
Load tavie Esc+m
Unload Movie Esc+um
Tell Target Esc+tt
If Frame |z Loaded Eszc+il
Wi e IEvERE S EEsrarn

Figure 1-1. Flash 5 Basic Actions

But there’s lots more to discover in the Toolbox pane: Figure 1-2 shows all avail-
able Actions, including some old friends from Flash 2, 3, and 4. If you continue
exploring the Toolbox pane, you'll even find things like Sound, Array, and XML.
By the end of this book, we’ll have covered them all.

The Toolbox pane’s menus may be used to create ActionScript code. However, in
order to learn the syntax, principles, and structural makeup of ActionScript, we’ll
be typing all our code.

So-called Actions are more than just Actions—they include various
fundamental programming-language tools: variables, conditionals,
loops, comments, function calls, and so forth. Although these are
lumped together in one menu, the generic name Action obscures the
programming structures’ significance.

We'll be breaking Actions down to give you a programmer’s perspective on those
structures. Throughout the book, I use the appropriate programming term to
describe the Action at hand. For example, instead of writing, “Add a while Action,”
I'll write, “Create a wbhile loop.” Instead of writing, “Add an if Action,” T'll write,
“Make a new conditional.” Instead of writing, “Add a play Action,” T'll write,
“Invoke the play() function (or method).” These distinctions are an important part
of learning to speak ActionScript.

Ready to get your hands dirty? Let’s say hello to Flash.

4~ ~4]e

,ch01.12472 Page 7 Thursday, April 19, 2001 12:58 PM

Some Basic Pbrases 7
break Esc+br
call Esctca
caomiment Esc+dd
continue Esc+co
delete Esc+da
do while Esc+do
duplicatetovieClip Esc+dm
che Esc+el

’m cle if Esc+ei
for Esc+

[+ =[Frameic for.in Esc+fi
m FSCommand Esc+s
Operators function Esc+fn
Functions » getURL Esc+gu
Froperties » gotasndPlay Esc+gp
Objects » gotodndStop Esc+gs
T i Esceif
ifFrameloaded Esc+l

include Esc+in

loadtavie Esc+im

loadtdovisNum Esc+n

loadyariables Esc+hv

loadvariableshum Esc+vn

nestFrame Esc+nf

hestS cene Esctns

on Escton

onClipEvent Esc+oc

play Esc+pl

prevFrame Ecc+pf

H prevScene Esc+ps
prink Esc+pr

print&sBitmap Esc+pb
print&sBitmapMum Esc+bn

printtum Esc+pn
removeMovieClip Esc+m
return Esc+t
set variable Esctev
setProperty Esc+sp
staitlirag Esc+dr
stop Escst
stopdllS ounds Esc+ss
stopDrag Esc+ad
tellT arget Esc+t
toggleHighuality Esc+tg
trace Esc+tr
unloadovie Esc+um
 _ unloaddovieumn Esc+un
Line 1 of 1, Cal 1 var Escrvr
uuhile Esctwh
with Esc+it

Figure 1-2. Expanded Actions

Say Hi to Flash

Before you can type code into the Actions panel, you must disengage the Action-
Script autopilot as follows:

1. Select Edit — Preferences.
2. On the General tab, select Actions Panel - Mode — Expert Mode.

3. Expert Mode is also selectable from the pop-up menu accessible via the arrow
at the far right of the Actions panel, though this only sets the current frame’s
mode. See Chapter 16, ActionScript Authoring Environment.

é ,ch01.12472 Page 8 Thursday, April 19, 2001 12:58 PM

8 Chapter 1: A Gentle Introduction for Non-Programmers

Howdya like that? You're already an expert. When you enter Expert Mode, the
Parameters pane at the bottom of the Actions Panel disappears. Don’'t worry—
we're not programming with menus so we won’t be needing it.

Next, select frame 1 of layer 1. Your ActionScript (a.k.a., code) must always be
attached to a frame, movie clip, or button; selecting frame 1 causes subsequently
created code to be attached to that frame. In Expert Mode, you can type directly
into the Script pane on the right side of the Actions panel, which is where we’ll be
doing all our programming.

And now, the exciting moment—ryour first line of code. It’s time to introduce your-
self to Flash! Type the following into the Script pane:

var message = "Hi there, Flash!";

That line of code constitutes a complete instruction, known as a statement. On the
line below it, type your second and third lines of code, shown following this para-
graph. Replace your name here with your first name (whenever you see
italicized code in this book it means you have to replace that portion of the
code with your own content):

var firstName = "your name here";

trace (message);
Hmmm. Nothing has happened yet. That’s because our code doesn’t do anything
until we export a .swf'file and play our movie. Before we do that, let’s ask Flash to
say hi back to us. Type your fourth line of code under the lines you've already
typed (man, we're really on a roll now . . .):

trace ("Hi there, " + firstName + ", nice to meet you.");

Okay, Flash is ready to meet you. Select Control — Test Movie and see what hap-
pens. Some text should appear in the Output window as shown in Figure 1-3.

Options

Hi there, Flash! =
Hi there, Colin, nice to mest you.

o

4 K 4

Figure 1-3. Flash gets friendly

Pretty neat, eh?! Let’s find out how it all happened.

é ,ch01.12472 Page 9 Thursday, April 19, 2001 12:58 PM

Some Basic Pbhrases 9

Keeping Track of Things (Variables)

Remember how I said programming was really just communicating with a com-
puter? Well it is, but perhaps with a little less personality than I've been portray-
ing so far. In your first line of code:

var message = "Hi there, Flash!";
you didn’t really say hi to Flash. You said something more like this:

Flash, please remember a piece of information for me—specifically, the phrase “Hi
there, Flash!” I may need that information in the future, so please give it a label
called message. If 1 ask you for message later, give me back the text “Hi there,
Flash!”

Perhaps not as friendly as saying hi, but it illustrates one of the true foundations of
programming: Flash can remember something for you, provided that you label it
so that it can be found later. For example, in your second line of code, we had
Flash remember your first name, and we named the reference to it £irstName.
Flash remembered your name and displayed it in the Output window when you
tested your movie.

The fact that Flash can remember things for us is crucial in programming. Flash
can remember any type of data, including text (such as your name), numbers
(such as 3.14159), and more complex datatypes that we’ll discuss later.

Official variable nomenclature

Time for a few formal terms to describe how Flash remembers things. So far you
know that Flash remembers data. An individual piece of data is known as a datum.
A datum (e.g., “Hi there, Flash!”) and the label that identifies it (e.g., message) are
together known as a variable. A variable’s label is called its name, and a variable’s
datum is called its value. We say that the variable stores or contains its value. Note
that “Hi there, Flash!” is surrounded by double quotation marks (quotes) to indi-
cate that it is a string of text, not a number or some other datatype.

In your first line of code, you specified the value of the variable message. The act
of specifying the value of a variable is known as assigning the variable’s value, or
generally, assignment. But before you can assign a value to a variable, you must
first create it. We formally bring variables into existence by declaring them using
the special keyword var, which you used earlier.

So, in practice, here’s how I might use more formal terms to instruct you to create
the first line of code you created earlier: Declare a new variable named message,
and assign it the initial value “Hi there, Flash!” Then you should write:

var message = "Hi there, Flash!";

4~ ~4]e

é ,ch01.12472 Page 10 Thursday, April 19, 2001 12:58 PM

10 Chapter 1: A Gentle Introduction for Non-Programmers

The Wizard Bebind the Curtain (the Interpreter)

Recall your first two lines of code:

var message = "Hi there, Flash!";

var firstName = "your name here";
In each of those statements, you created a variable and assigned a value to it.
Your third and fourth lines, however, are a little different:

trace (message);

trace ("Hi there, " + firstName + ", nice to meet you.");
These statements use the #race() command. You've already seen the effect of that
command—it caused Flash to display your text in the Output window. In the third
line, Flash displayed the value of the variable message. In the last line, Flash also
converted the variable firstName to its value (whatever you typed) and stuck that
into the sentence after the words “Hi there.” The trace() command, then, causes
any specified data to appear in the Output window (which makes it handy for
determining what's going on when a program is running).

The question is, what made the frace() command place your text in the Output
window? When you create a variable or issue a command, you're actually address-
ing the ActionScript interpreter, which runs your programs, manages your code,
listens for instructions, performs any ActionScript commands, executes your state-
ments, stores your data, sends you information, calculates values, and even starts
up the basic programming environment when a movie is loaded into the Flash
Player.

The interpreter translates your ActionScript into a language that the computer
understands and uses to carry out your code. During movie playback, the inter-
preter is always active, dutifully attempting to understand commands you give it. If
the interpreter can understand your commands, it sends them to the computer’s
processor for execution. If a command generates a result, the interpreter provides
that response to you. If the interpreter can’t understand the command, it sends you
an error message. The interpreter, hence, acts like ActionScript’s switchboard oper-
ator—it’s the audience you're addressing in your code and the ambassador that
reports back to you from Flash.

Let’s take a closer look at how the interpreter works by examining how it handles
a simple trace() action.

Consider this command as the interpreter would:
trace ("Nice night to learn ActionScript.");

The interpreter immediately recognizes the keyword trace from its special list of
legal command names. The interpreter also knows that trace() is used to display

4~ ~4]e

é ,ch01.12472 Page 11 Thursday, April 19, 2001 12:58 PM

Some Basic Phrases 11

text in the Output window, so it also expects to be told which text to display. It
finds “Nice night to learn ActionScript.” between parentheses following the word
trace and thinks “Aha! That’s just what I need. I'll have that sent to the Output
window right away!”

Note that the command is terminated by a semicolon (;). The semicolon acts like
the period at the end of a sentence; with few exceptions, every ActionScript state-
ment should end with a semicolon. With the statement successfully understood
and all the required information in hand, the interpreter translates the command
for the processor to execute, causing our text to appear in the Output window.

That’s a gross oversimplification of the internal details of how a computer proces-
sor and an interpreter work, but it illustrates these points:

e The interpreter is always listening for your instructions.

e The interpreter has to read your code, letter by letter, and try to understand it.
This is the same as you trying to read and understand a sentence in a book.

e The interpreter reads your ActionScript using strict rules—if the parentheses in
our frace() statement were missing, for example, the interpreter wouldn’t be
able to understand what’s going on, so the command would fail.

You've only just been introduced to the interpreter, but you’ll be as intimate with
it as you are with a lover before too long: lots of fights, lots of yelling—“Why
aren’t you listening to me?!”—and lots of beautiful moments when you understand
each other perfectly. Strangely enough, my dad always told me the best way to
learn a new language is to find a lover that speaks it. May I, therefore, be the first
to wish you all the best in your new relationship with the ActionScript interpreter.
From now on T'll regularly refer to “the interpreter” instead of “Flash” when
describing how ActionScript instructions are carried out.

Extra Info Required (Arguments)

You've already seen one case in which we provided the interpreter with the text
to display when issuing a trace() command. This approach is common; we’ll often
issue a command and then provide the interpreter with ancillary data used to exe-
cute that command. There’s a special name for a datum sent to a command: an
argument, or synonymously, a parameter. To supply an argument to a command,
enclose the argument in parentheses, like this:

command (argument) ;

When supplying multiple arguments to a command, separate them with commas,
like this:

command (argumentl, argument2, argument3);

4~ ~4]e

é ,ch01.12472 Page 12 Thursday, April 19, 2001 12:58 PM

12 Chapter 1: A Gentle Introduction for Non-Programmers

Supplying an argument to a command is known as passing the argument. For
example, in the code gotoAndPlay(5), gotoAndPlay is the name of the com-
mand, and 5 is the argument being passed (in this case the frame number). Some
commands, such as stop(), require parentheses but do not accept arguments. We’ll
learn why in Chapter 9, Functions.

ActionScript’s Glue (Operators)

Let’s take another look at your fourth line of code, which contains this trace()
statement:

trace ("Hi there, " + firstName + ", nice to meet you.");

See the + (plus) signs? They’re used to join (concatenate) our text together and are
but one of many available operators. The operators of a programming language
are akin to conjunctions (“and,” “or,” “but,” etc.) in human languages. They’re
devices used to combine and manipulate phrases of code. In the trace() example,
the plus operator joins the quoted text “Hi there, ” to the text contained in the
variable firstName.

All operators link phrases of code together, manipulating those phrases in the pro-
cess. Whether the phrases are text, numbers, or some other datatype, an operator
nearly always performs some kind of transformation. Very commonly, operators
combine two things together, as the plus operator does. But other operators com-
pare values, assign values, facilitate logical decisions, determine datatypes, create
new objects, and provide various other handy services.

When used with two numeric operands, the plus sign (+) and the minus sign (-),
perform basic arithmetic. The following displays “3” in the Output window:

trace(5 - 2);

The less-than operator checks which of two numbers is smaller or determines
which of two letters is alphabetically first:
if (3 < 300) {

// Do something...
}

if (Ila" < Ilz") (
// Do something else...

}
The combinations, comparisons, assignments, or other manipulations performed
by operators are known as operations. Arithmetic operations are the easiest opera-
tions to understand because they follow basic mathematics: addition (+), subtrac-
tion (-), multiplication (*), and division (/). But some operators will be less
recognizable to you because they perform specialized programming tasks. Take

4~ ~4]e

é ,ch01.12472 Page 13 Thursday, April 19, 2001 12:58 PM

Some Basic Pbrases 13

the #ypeof operator, for example. It tells us what kind of data is stored in a vari-
able. So, if we create a variable x, and give it the value 4, we can then ask the
interpreter what datatype x contains, like this:

var X = 4;

trace (typeof x);
When that line of code is executed in Flash, we get the word “number” in the Out-
put window. Notice that we provide the #ypeof operator with a value upon which
to operate, but without using parentheses: typeof x. You might therefore won-
der whether or not x is an argument of typeof. In fact, x plays the same role as an
argument (it’s an ancillary piece of data needed in the computation of the phrase
of code), but in the context of an operator, the argument-like x is officially called
an operand. An operand is an item upon which an operator operates. For exam-
ple, in the expression 4 + 9, the numbers 4 and 9 are operands of the + operator.

Chapter 5, Operators, covers all of the ActionScript operators in detail. For now
just remember that operators link phrases of code in some kind of transformation.

Putting It All Together

Let’s review what you've learned. Here, again, is line one:
var message = "Hi there, Flash!";

The keyword var tells the interpreter that we’re declaring (creating) a new vari-
able. The word message is the name of our variable. The equals sign is an opera-
tor that assigns the text string (“Hi there, Flash!”) to the variable message. The text
“Hi there, Flash!” hence, becomes the value of message. Finally, the semicolon (;)
tells the interpreter that we're finished with our first statement.

Line two is pretty much the same as line one:
var firstName = "your name here";

Here we're assigning the text string you typed in place of your name here to the
variable firstName. A semicolon ends our second statement.

We then use the variables message and firstName in lines three and four:

trace (message);

trace ("Hi there, " + firstName + ", nice to meet you.");
The keyword trace signals the interpreter that we’d like some text displayed in the
Output window. We pass the text we want displayed as an argument. The open-
ing parenthesis marks the beginning of our argument. In line four, the argument
itself includes two operations, both of which use the plus operator. The first opera-
tion joins its first operand, “Hi there, ” to the value of its second operand,
firstName. The second operation joins ¢, nice to meet you.” to the result of the

«

4~ ~4]e

é ,ch01.12472 Page 14 Thursday, April 19, 2001 12:58 PM

14 Chapter 1: A Gentle Introduction for Non-Programmers

first operation. The closing parenthesis marks the end of our argument, and the
semicolon once again indicates the end of our statement.

Blam! Your first ActionScript program. That has a nice ring to it, and it’s an impor-
tant landmark.

Further ActionScript Concepis

You've already been introduced to many of the fundamental elements that make
up ActionScript: data, variables, operators, statements, functions, and arguments.
Before we delve deeper into those topics, let’s sketch out the rest of ActionScript’s
core features.

Flash Programs

To most computer users, a program is synonymous with an application, such as
Adobe Photoshop or Macromedia Dreamweaver. Obviously, that’s not what we’re
building when we program in Flash. Programmers, on the other hand, define a
program as a collection of code (a “series of statements”), but that’s only part of
what we’re building.

A Flash movie is more than a series of lines of code. Code in Flash is intermingled
with Flash movie elements, like frames and buttons. We attach our code to those
elements so that it can interact with them.

In the end, there really isn’t such a thing as a Flash “program” in the classic sense
of the term. Instead of complete programs written in ActionScript, we have scripts:
code segments that give programmatic behavior to our movie, just as JavaScript
scripts give programmatic behavior to HTML documents. The real product we’re
building is not a program but a complete movie (including its code, timelines,
visuals, sound, and other assets).

Our scripts include most of what you'd see in traditional programs without the
operating-system-level stuff you would write in languages like C++ or Java to
place graphics on the screen or cue sounds. We're spared the need to manage the
nuts 'n’ bolts of graphics and sound programming, which allows us to focus most
of our effort on designing the behavior of our movies.

Expressions

The statements of a script, as we've learned, contain the script’s instructions. But
most instructions are pretty useless without data. When we set a variable, for exam-
ple, we assign some data as its value. When we use the trace() command, we pass
data as an argument for display in the Output window. Data is the content we

4~ ~4]e

é ,ch01.12472 Page 15 Thursday, April 19, 2001 12:58 PM

Further ActionScript Conceplts 15

manipulate in our ActionScript code. Throughout your scripts, you'll retrieve, give,
store, and generally sling around a lot of data.

In a program, any phrase of code that yields a single datum when a program runs
is referred to as an expression. The number 7 and the string, “Welcome to my web
site,” are both very simple expressions. They represent simple data that will be
used as-is when the program runs. As such, those expressions are called literal
expressions, or literals for short.

Literals are only one kind of expression. A variable may also be an expression
(variables stand in for data, so they count as expressions). Expressions get even
more interesting when they are combined with operators. The expression 4 + 5,
for example, is an expression with two operands, 4 and 5, but the plus operator
makes the entire expression yield the single value 9. Complex expressions may
contain other, shorter expressions, provided that the entire phrase of code can still
be converted into a single value.

Here we see the variable message:

var message = "Hi there, Flash!";
If we like, we can combine the variable expression message with the literal
expression “ How are you?” as follows:

message + " How are you?"

which becomes “Hi there, Flash! How are you?” when the program runs. You’ll
frequently see long expressions include shorter expressions when working with
arithmetic, such as:

(2 +3) * (4/2.5 -1

It's important to be exposed to expressions early in your programming career
because the term “expression” is often used in descriptions of programming con-
cepts. For example, I might write, “To assign a value to a variable, type the name
of the variable, then an equal sign followed by any expression.”

Two Vital Statement Types: Conditionals and Loops

In nearly all programs, we'll use conditionals to add logic to our programs and
loops to perform repetitive tasks.

Making choices using conditionals

One of the really rewarding aspects of Flash programming is making your movies
smart. Here’s what I mean by smart: Suppose a girl named Wendy doesn’t like get-
ting her clothes wet. Before Wendy leaves her house every morning, she looks out
the window to check the weather, and if it’s raining, she brings an umbrella.

4~ ~4]e

é ,ch01.12472 Page 16 Thursday, April 19,2001 12:58 PM

16 Chapter 1: A Gentle Introduction for Non-Programmers

Wendy’s smart. She uses basic logic—the ability to look at a series of options and
make a decision about what to do based on the circumstances. We use the same
basic logic when creating interactive Flash movies.

Here are a few examples of logic in a Flash movie:

e Suppose we have three sections in a movie. When a user goes to each sec-
tion, we use logic to decide whether to show her the introduction to that sec-
tion. If she has been to the section before, we skip the introduction.
Otherwise, we show the introduction.

e Suppose we have a section of a movie that is restricted. To enter the restricted
zone, the user must enter a password. If the user enters the right password,
we show her the restricted content. Otherwise, we don't.

e Suppose we’re moving a ball across the screen and we want it to bounce off a
wall. If the ball crosses a certain point, we reverse the ball’s direction. Other-
wise, we let the ball continue traveling in the direction it was going.

These examples of movie logic require the use of a special type of statement
called a conditional. Conditionals let us specify the terms under which a section of
code should—or should not—be executed. Here’s an example of a conditional
statement:

if (userName == "James Bond") {

trace ("Welcome to my web site, 007.");
}

The generic structure of a conditional is:

if (this condition is met) {
then execute these lines of code
}
You'll learn more about the detailed syntax in Chapter 7, Conditionals. For now,
remember that a conditional allows Flash to make logical decisions.

Repeating tasks using loops

Not only do we want our movies to make decisions, we want them to do tedious,
repetitive tasks for us. That is, until they take over the world and enslave us and
grow us in little energy pods as . .. wait . . . forget I told you that . . . ahem. Sup-
pose you want to display a sequence of five numbers in the Output window, and
you want the sequence to start at a certain number. If the starting number were
10, you could display the sequence like this:

trace (10);
trace (11);
trace (12);
trace (13);
trace (14);

é ,ch01.12472 Page 17 Thursday, April 19, 2001 12:58 PM

Further ActionScript Conceplts 17

But if you want to start the sequence at 513, you'd have to retype all the numbers
as follows:

trace (513);

trace (514);

trace (515);

trace (516);
trace (517);

We can avoid that retyping by making our trace() statements depend on a vari-
able, like this:

var X = 1;
trace (x);
X =X+ 1;

trace (x);

x =x+1;

trace (x);

x =X+ 1;

trace (x);

X =X+ 1;

trace (x);
On line 1, we set the value of the variable x to 1. Then at line 2, we send that
value to the Output window. On line 3, we say, “Take the current value of %, add
1 to it, and stick the result back into our variable x,” so x becomes 2. Then we
send the value of x to the Output window again. We repeat this process three
more times. By the time we're done, we've displayed a sequence of five numbers
in the Output window. The beauty being that if we now want to change the start-
ing number of our sequence, we just change the initial value of x. Because the rest

of our code is based on x, the entire sequence changes when the program runs.

That's an improvement over our first approach, and it works pretty well when
we're displaying only five numbers, but it becomes impractical if we want to count
to 500. To perform highly repetitive tasks, we use a loop—a statement that causes
a block of code to be repeated an arbitrary number of times. There are several
types of loops, each with its own syntax. One of the most common loop types is
the while loop. Here’s what our counting example would look like as a while loop
instead of as a series of repeated statements:
var X = 1;
while (x <= 5) {
trace (x);
X =x+1;
}
The keyword while indicates that we want to start a loop. The expression (x <= 5)
governs how many times the loop should execute (as long as x is less than or
equal to 5), and the statements trace (x); and x = x + I; are executed with each
repetition (or iteration) of the loop. As it is, our loop saves us only 5 lines of code,

4~ ~4]e

é ,ch01.12472 Page 18 Thursday, April 19, 2001 12:58 PM

18 Chapter 1: A Gentle Introduction for Non-Programmers

but it could potentially save us hundreds of lines if we were counting to higher
numbers. And our loop is flexible. To make our loop count to 500, we simply
change the expression (x <=5) to (x <=500):

var X = 1;
while (x <= 500) {
trace (x);

X =x+ 1;

}

Like conditionals, loops are one of the most frequently used and important types
of statements in programming.

Modular Code (Functions)

So far your longest script has consisted of four lines of code. But it won’t be long
before that 4 lines becomes 400 or maybe even 4,000. Sooner or later you're going
to end up looking for ways to manage your code, reduce your work, and make
your code easier to apply to multiple scenarios. Which is when you’ll first really
start to love functions. A function is a packaged series of statements. In practice,
functions mostly serve as reusable blocks of code.

Suppose you want to write a quick script that calculates the area of a 4-sided fig-
ure. Without functions, your script might look like this:

var height = 10;
var width = 15;
var area = height * width;

Now suppose you want to calculate the area of five 4-sided figures. Your code
quintuples in size:

var heightl = 10;

var widthl = 15;

var areal = heightl * widthl;
var height2 = 11;

var width2 = 16;

var area2 = height2 * width2;
var height3 = 12;

var width3 = 17;

var area3 = height3 * width3;
var heightd = 13;

var width4 = 18;

var aread = height4 * width4;
var height5 = 20;

var width5 = 5;

var area5 = height5 * width5;

Because we’re repeating the area calculation over and over, we are better off put-
ting it in a function once and executing that function multiple times:

4~ ~4]e

é ,ch01.12472 Page 19 Thursday, April 19, 2001 12:58 PM

Further ActionScript Conceplts 19

function area(height, width) {
return height * width;

}

areal = area(10, 15);

area2 = area(ll, 16);

area3 = area(12, 17);

area4 = area(13, 18);

area5 = area(20, 5);
We first created the area-calculating function using the function statement, which
defines (declares) a function just as var declares a variable. Then we gave our
function a name, area, just as we give variables names. Between the parentheses,
we listed the arguments that our function receives every time it's used: height
and width. And between the curly braces (f D, we included the statement(s) we
want our function to execute:

return height * width;

After we create a function, we may run the code it contains from anywhere in our
movie by using its name. In our example we called the area() function five times,
passing it the height and width values it expects each time: area(10, 15),
area(11, 16), and so on. The result of each calculation is returned to us and we
store those results in the variables areal through area5. Nice and neat, and much
less work than the non-function version of our code.

Don't fret if you have questions about this function example, as we’ll learn more
about functions in Chapter 9. For now, just remember that functions give us an
extremely powerful way to create complex systems. Functions help us reuse our
code and package its functionality, extending the limits of what is practical to
build.

Built-in functions

Notice that functions take arguments just as the trace() Action does. Invoking the
function area(4, 5); looks very much the same as issuing the trace() command
such as trace (x);. The similarity is not a coincidence. As we pointed out earlier,
many Actions, including the trace() Action, are actually functions. But they are a
special type of function that is built into ActionScript (as opposed to user-defined,
like our area() function). Tt is, therefore, legitimate—and technically more accu-
rate—to say, “Call the gotoAndStop() function,” than to say, “Execute a
gotoAndStop Action.” A built-in function is simply a reusable block of code that
comes with ActionScript for our convenience. Built-in functions let us do every-
thing from performing mathematical calculations to controlling movie clips. All the
built-in functions are listed in Part III, Language Reference. We'll also encounter
many of them as we learn ActionScript’s fundamentals.

4~ ~4]e

é ,ch01.12472 Page 20 Thursday, April 19,2001 12:58 PM

20 Chapter 1: A Gentle Introduction for Non-Programmers

Movie Clip Instances

With all this talk about programming fundamentals, I hope you haven’t forgotten
about the basics of Flash. One of the keys to visual programming in Flash is movie
clip instances. As a Flash designer or developer, you should already be familiar
with movie clips, but you may not think of movie clips as programming devices.

Every movie clip has a symbol definition that resides in the Library of a Flash
movie. We can add many copies, or instances, of a single movie clip symbol to a
Flash movie by dragging the clip from the Library onto the Stage. A great deal of
advanced Flash programming is simply a matter of movie clip instance control. A
bouncing ball, for example, is nothing more than a movie clip instance being
repositioned on the Stage repetitively. We can alter an instance’s location, size,
current frame, rotation, and so forth, through ActionScript during the playback of
our movie.

If you’re unfamiliar with movie clips and instances, consult Flash’s documentation
or Help files before continuing with the rest of this book.

The Event-Based Execution Model

One final topic we should consider in our overview of ActionScript fundamentals
is the execution model, which dictates when the code in your movie runs (is exe-
cuted). You may have code attached to various frames, buttons, and movie clips
throughout your movie. But when does it all actually run? To answer that ques-
tion, let’s take a short stroll down computing history’s memory lane.

In the early days of computing, a program’s instructions were executed sequen-
tially in the order that they appeared, starting with the first line and ending with
the last line. The program was meant to perform some action and then stop. That
kind of program, called a batch program, doesn’t handle the interactivity required
of an event-based programming environment like Flash.

Event-based programs don’t run in a linear fashion as batch programs do. They
run continuously (in an event loop), waiting for things (events) to happen and exe-
cuting code segments in response to those events. In a language designed for use
with a visual interactive environment (such as ActionScript or JavaScript), the
events are typically user actions such as mouseclicks or keystrokes.

When an event such as a mouseclick occurs, the interpreter sounds an alarm. A
program can then react to that alarm by asking the interpreter to execute an
appropriate segment of code. For example, if a user clicks a button in a movie, we
could execute some code that displays a different section of the movie (classic
navigation) or submits variables to a database (classic form submission).

4~ ~4]e

é ,ch01.12472 Page 21 Thursday, April 19, 2001 12:58 PM

Building a Multiple-Choice Quiz 21

But programs don'’t react to events unless we create event bhandlers. Here’'s some
pseudo-code that shows generally how event handlers are set up:
when (this event happens) {

execute these lines of code

}
This is typically written in the general form:

on (event) {
statements
}
In practice, an event handler for a button that moves the playhead to frame 200
would read:

on (press) {
gotoAndStop (200) ;

}
Because event-based programs are always running an event loop, ready to react to
the next event, they are like living systems. Events are a crucial part of Flash mov-
ies. Without events, our scripts wouldn’t do anything—with one exception: Flash
executes any code on a frame when the playhead enters that frame. The implied
event is simply the playhead entering the particular frame, which is so intrinsic to
Flash that no explicit event handler is required.

Events literally make things happen, which is why they come at the end of your
first day of ActionScript language school. You've learned what’s involved in writ-
ing scripts and what governs when those scripts will actually be executed (.e.,
events). I'd say you're ready to try your first real conversation.

Building a Multiple-Choice Quiz

Now that we've explored the basic principles of ActionScript, let’s apply those
principles in the context of a real Flash movie. We'll start our applied study of
Flash programming by creating a multiple-choice quiz using very simple program-
ming techniques, most of which you’ve already learned. We’ll revisit our quiz in
later chapters to see how it can be improved after learning more advanced pro-
gramming concepts. We'll eventually make the code more elegant so that it’s eas-
ier to extend and maintain, and we’ll add more features to our quiz so that it can
easily handle any number of questions.

The finished .fla file for this quiz may be found in the online Code Depot. This is
a lesson in Flash programming, not Flash production. It is assumed that you are
already comfortable creating and using buttons, layers, frames, keyframes, and the

4~ ~4]e

% é ,ch01.12472 Page 22 Thursday, April 19, 2001 12:58 PM

22 Chapter 1: A Gentle Introduction for Non-Programmers

Text tool. The quiz shows real-world applications of the following aspects of
ActionScript programming:

e Variables

e Controlling the playhead of a movie with functions

e Button event handlers

e Simple conditionals

e Text field variables for on-screen display of information

Quiz Overview

Our quiz, part of which is shown in Figure 1-4, will have only two questions. Each
question comes with three multiple-choice answers. Users submit their answers by
clicking the button that corresponds to their desired selections. The selections are
recorded in a variable so that they may be used to grade the user’s score. When all
the questions have been answered, the number of correct answers is tallied and
the user’s score is displayed.

version 1

in this version of the guiz, the questions are

- when were movie clips introduced into flash?

|:| version 1

|:| wversion 2

[wversion 3

Figure 1-4. A Flash quiz

é ,ch01.12472 Page 23 Thursday, April 19,2001 12:58 PM

Building a Multiple-Choice Quiz 23

Building the Layer Structure

When building Flash movies, it’s important to organize your content into manage-
able divisions by keeping different content elements on individual layers. Layering
content is a good production technique in general, but it is essential in Flash pro-
gramming. In our quiz, and in the vast majority of our scripted movies, we’ll keep
all our timeline scripts on a single isolated layer, called scripts. 1 keep the scripts
layer as the first one in my layer stack so that it’s easy to find.

We'll also keep all our frame labels on a separate layer, called (surprise, surprise)
labels. The labels layer should live beneath the scripts layer on all your timelines.
In addition to these two standard layers (scripts and labels), our quiz movie has a
series of content layers on which we’ll isolate our various content assets.

Start building your quiz by creating and naming the following layers and arrang-
ing them in the order that they appear here:

scripts
labels
quiz end
question 2
question 1
bousing

Now add 30 frames to each of your layers. Your timeline should look like the one
in Figure 1-5.

#% Flash 5 - [Movied]
E& Fil= Edit Wiew |nzett Modify Test Control Window Help
& Scene
QED'1“"5 """ w s Tm [l w s w s m
[scripte + = []
[P labels « « W
[quiz end + + [
[P question 2 « « [
27 question 1 «+ - @O
B housing L |
[+] i || 4] @l Bl L[z [rzoms [18 4] |

Figure 1-5. Quiz timeline initial setup

Creating the Interface and Questions

Before we get into the scripts that run the quiz, we need to set up the questions
and the interface that will let the user proceed through the quiz.

- ad

é ,ch01.12472 Page 24 Thursday, April 19, 2001 12:58 PM

24 Chapter 1: A Gentle Introduction for Non-Programmers

Here are the steps you should follow:

1. With frame 1 of the housing layer selected, use the Text tool to type your quiz
title directly on the Stage.

2. At frame 1 of the question 1 layer, add the question number “1” and the text
for Question 1, “When were movie clips introduced into Flash?” Leave room
for the answer text and buttons below your question.

3. Create a simple button that looks like a checkbox or radio button and mea-
sures no higher than a line of text (see Figure 1-6).

4. Below your question text (still on the guestion 1 layer), add the text of your
three multiple-choice answers: “Version 1,” “Version 2,” and “Version 3,” each
on its own line.

5. Next to each of your three answers, place an instance of your checkbox button.

6. We'll use Question 1 as a template for Question 2. Select the first frame of the
question 1 layer and choose Edit -+ Copy Frames.

7. Select frame 10 of the question 2 layer and choose Edit — Paste Frames. A
duplicate of your first question appears on the question 2 layer at frame 10.

8. While still in frame 10 of the question 2 layer, change the question number
from “1” to “2” and change the text of the question to, “When was MP3 audio
support added to Flash?” Change the multiple-choice answers to “Version 3,”
“Version 4,” and “Version 5.”

9. Finally, to prevent Question 1 from appearing underneath Question 2, add a
blank keyframe at frame 10 of the question 1 layer.

Figure 1-6 shows the Flash movie after you've added the first question to the quiz.
Figure 1-7 shows how your timeline will look after you've added the two ques-
tions to the quiz.

Initializing the Quiz

Our first order of business in our quiz script (and in most scripts) is to create the
main timeline variables we’ll use throughout our movie. In our quiz we do this on
the first frame of the movie, but in other movies we’ll normally do it after preload-
ing part or all of the movie. Either way, we want to initialize our variables before
any other scripting occurs. Once our variables are defined, we invoke the stop()
function to keep the user paused on the first frame (where the quiz starts).

For more complex movies, we may also set the initial conditions by calling func-
tions and assigning variable values in preparation for the rest of the movie. This
step is known as initialization. Functions that start processes in motion or define
the initial conditions under which a system operates are frequently named init.

4~ ~4]e

2D ,ch01.12472 Page 25 Thursday, April 19, 2001 12:58 PM

Building a Multiple-Choice Quiz 25

z, the questions are
. the number of
an not be altered programmatically.
butto d the quiz end frame.

.- when were movie clips introduced into flash?

D version 1
O wersion 2

[wversion 3

Figure 1-6. Quiz title and Question 1

Figure 1-7. Quiz timeline with two questions

Our quiz init code, shown in Example 1-1, is attached to frame 1 of the scripts
layer of our movie.

Example 1-1. Init Code for Quiz

// Init main timeline variables

var glanswer; // User's answer for question 1

var glanswer; // User's answer for question 2

var totalCorrect = 0; // Counts number of correct answers

var displayTotal; // Text field for displaying user's score

// Stop the movie at the first question
stop();

Line 1 of our init sequence is a code comment. Code comments are notes that you
add in your code to explain what’s going on. A single-line comment starts with
two forward slashes and a space, which is then followed by a line of text:

// This is a comment
Notice that comments can be placed on the same line as your code, like this:

x = 5; // This is also a comment

é ,ch01.12472 Page 26 Thursday, April 19, 2001 12:58 PM

26 Chapter 1: A Gentle Introduction for Non-Programmers

Line 2 of Example 1-1 creates a variable named glanswer. Recall that to create a
variable we use the var keyword followed by a variable name, as in:

var favoriteColor;

So, the second through fifth lines of our code declare the variables we’ll need,
complete with comments explaining their purpose:

e glanswer and g2answer will contain the value of the user’s answer (1, 2, or
3, indicating which of the three multiple-choice options was selected for each
question). We’ll use these values to check whether the user answered the
questions correctly.

e totalCorrect will be used at the end of the quiz to tally the number of
questions that the user answered correctly.

e displayTotal is the name of the text field that we’'ll use to show the value of
totalCorrect on screen.

Take a closer look at Line 4 of Example 1-1:
var totalCorrect = 0; // Counts number of correct answers

Line 4 performs double duty; it first declares the variable totalCorrect and then
assigns the value O to that variable using the assignment operator, =. We want
totalCorrect to default to O in case the user hasn’'t answered any of the ques-
tions correctly. The other variables don’t need default values because they are all
set explicitly during the quiz.

After our variables have been defined, we call the stop() function, which halts the

playback of the movie on frame 1, where the quiz begins:

// Stop the movie at the first question
stop () ;

The stop() function has the exact same effect as any stop Action you may have
used in Flash 4 or earlier (it pauses the playhead in the current frame).

Observe, again, the use of the comment before the stop() function
call. That comment explains the intended effect of the code that fol-
lows. Comments are optional, but they help clarify our code if we
leave it for a while and need a refresher when we return or if we
pass our code to another developer. Comments also make code easy
to scan, which is important during debugging.

Now that you know what our init code does, let’s add it to our quiz movie:

1. Select Frame 1 of the scripts layer.

2. Choose Window — Actions. The Frame Actions panel appears.

4~ ~4]e

é ,ch01.12472 Page 27 Thursday, April 19, 2001 12:58 PM

Building a Multiple-Choice Quiz 27

3. Make sure you’re using Expert Mode, which can be set as a permanent prefer-
ence under Edit -+ Preferences.

4. Into the right side of the Frame Actions panel, type the init code as shown
earlier in Example 1-1.

Variable Naming Styles

By now you've seen quite a few variable names, and you may be wondering
about the capitalization. If you've never programmed before, a capital letter in
the middle of a word, as in firstName, or totalCorrect, may seem odd.
Capitalizing the second word (and any following words) of a variable name
visually demarcates the words within that name. We use this technique
because spaces and dashes aren’t allowed in a variable name. But don’t capi-
talize the first letter of a variable name—an initial capital letter is conventionally
used to name object classes, not variables.

If you use underscores instead of capital letters to separate words in variables,
as in first_name and total_correct, be consistent. Don’t use firstName
for some variables and second_name for others. Use one of these styles so that
other programmers will find your code understandable. Variable names in
some languages are case-sensitive, meaning that firstName and firstname
would be considered two different variables. ActionScript, however, treats them
as the same thing. But it’s bad form to use two different cases to refer to the
same variable; if you call a variable xP0OS, don'’t refer to it elsewhere as xpos.

Always give your variables and functions meaningful names that help you
remember what they are for. Avoid useless names like “foo,” and use single-

letter variables, such as “x” or “i” only for simple things like the index (i.e.,
counting variable) in a loop.

Adding Frame Labels

We've got our quiz’s init script done and our questions built. We should now add
some frame labels so that we can control the playback of our quiz.

In order to step the user through our quiz one question at a time, we’'ve separated
the content for Question 1 and Question 2 into frames 1 and 10. By moving the
playhead to those keyframes, we’ll create a slide show effect, where each slide
contains a question. We know that Question 2 is on frame 10, so when we want
to display Question 2, we can call the gotoAndStop() function like this:

gotoAndStop (10) ;

which would cause the playhead to advance to frame 10, the location of Question
2. A sensible piece of code, right? Wrong! Whereas using the specific number 10

4~ ~4]e

%}% é ,ch01.12472 Page 28 Thursday, April 19, 2001 12:58 PM

28 Chapter 1: A Gentle Introduction for Non-Programmers

with our gotoAndStop() function works, it isn’t flexible. If, for example, we added
five frames to the timeline before frame 10, Question 2 would suddenly reside at
frame 15, and our gotoAndStop(10) command would not bring the user to the cor-
rect frame. To allow our code to work even if the frames in our timeline shift, we
use frame labels instead of frame numbers. Frame labels are expressive names,
such as g2 or quizEnd, by which we can refer to specific points on the timeline.
Once a point is labeled, we can use the label to refer to the frame by name
instead of by number.

The flexibility of frame labels is indispensable. T hardly ever use frame numbers
with playback-control functions like gotoAndStop(). Let's add all the labels we’ll
need for our quiz now, so that we can use them later to walk the user through the
quiz questions:

1. On the labels layer, click frame 1.

2. Select Modify — Frame. The Frame panel appears.

3. In the Label text field, type init.

4. At frame 10 of the labels layer, add a blank keyframe.

5. In the Frame panel, in the Label text field, type qg2.

6. At frame 20 of the labels layer, add a blank keyframe.

7. In the Frame panel, in the Label text field, type quizEnd.

Scripting the Answer Buttons

Our questions are in place, our variables have been initialized, and our frames
have been labeled. If we were to test our movie now, we’d see Question 1 appear
with three answer buttons that do nothing when clicked and no way for the user
to get to Question 2. We need to add some code to the answer buttons so that
they will advance the user through the quiz and keep track of his answers along
the way.

For convenience, we'll refer to the multiple-choice buttons as button 1, button 2,
and button 3, as shown in Figure 1-8.

.« when were

button 1 T version 1
button 2 2 version 2
button 3 B version 3

Figure 1-8. The answer buttons

ﬁ

%%

é ,ch01.12472 Page 29 Thursday, April 19, 2001 12:58 PM

Building a Multiple-Choice Quiz 29

Our three buttons get very similar scripts. Example 1-2 through Example 1-4 show
the code for each button.

Example 1-2. Code for Question 1, Button 1

on (release) ({
glanswer = 1;
gotoAndStop ("q@2");
}

Example 1-3. Code for Question 1, Button 2

on (release) {
glanswer = 2;
gotoAndStop ("q@2");
}

Example 1-4. Code for Question 1, Button 3

on (release) {
glanswer = 3;
gotoAndStop ("q@2");
}

The button code consists of two statements (lines 2 and 3) that are executed only
when a mouseclick is detected. In natural language, the code for each button says,
“When the user clicks this button, make a note that he chose answer 1, 2, or 3,
then proceed to Question 2.” Here’s how it works.

Line 1 is the beginning of an event handler:

on (release) {

The event handler waits patiently for the user to click button 1. Recall that an
event handler listens for things (such as mouseclicks) that happen while the movie
is running. When an event occurs, the code contained in the appropriate handler
is executed.

Let’s dissect the event handler that begins on line 1. The keyword on signals the
start of the event handler. (If the word oz seems a little awkward to you, think of
it as when until you're comfortable with it.) The keyword release, enclosed in
parentheses, indicates the #ype of event that the event handler is listening for; in
this case, we're listening for a release event, which occurs when the user clicks
and releases the mouse over the button. The opening curly brace ({) marks the
beginning of the block of statements that should be executed when the release
event occurs. The end of the code block is marked by a closing curly brace (}) on
line 4, which is the end of the event handler.

Line 2 is the first of the statements that will be executed when the release event
occurs. The code in line 2 should be getting quite familiar to you:

glanswer = 1;

4~ ~4]e

é ,ch01.12472 Page 30 Thursday, April 19,2001 12:58 PM

30 Chapter 1: A Gentle Introduction for Non-Programmers

It sets the variable glanswer to 1 (the other answer buttons set it to 2 or 3). The
glanswer variable stores the user’s answer for the first question. Once we have
recorded the user’s answer for Question 1, we advance to Question 2 via line 3 of
our button code:

gotoAndStop ("q@2");

Line 3 calls the gotoAndStop() function, passing it the frame label “q2” as an argu-
ment, which advances the playhead to the frame g2 where Question 2 appears.

Now that you know how the button code works, let’s add it to the Question 1
buttons:

1. With the Actions panel open, select button 1 on the Stage. The Frame Actions
title changes to Object Actions. Any code you add now will be attached to
button 1 (the selected object on the Stage).

2. Into the right side of the Actions panel, type the code from Example 1-2.

3. Repeat steps 1 and 2 to add button code to buttons 2 and 3. On button 2, set
glanswer to 2; on button 3, set glanswer to 3, as shown in Example 1-3 and
Example 1-4.

The code for the Question 2 buttons is structurally identical to that of the Ques-
tion 1 buttons (we change only the name of the answer variable and the destina-
tion of the gotoAndStop() call). Example 1-5 shows the code for button 1 of
Question 2.

Example 1-5. Code for Question 2, Button 1

on (release) {
g2answer = 1;
gotoAndStop ("quizEnd");
}

We use the variable g2answer instead of glanswer because we want the buttons
to keep track of the user’s selection for Question 2. We use “quizEnd” as the argu-
ment for our gotoAndStop() function call to advance the playhead to the end of
the quiz (i.e., the frame labeled quizEnd) after the user answers Question 2.

Let’s add the button code for the Question 2 buttons:
1. Click on frame 10 of the guestion 2 layer.
2. Click on button 1.
3. Into the Actions panel, type the code from Example 1-5.
4.

Repeat steps 2 and 3 to add button code to buttons 2 and 3. On button 2, set
g2answer to 2. On button 3, set g2answer to 3.

Having just added button code to six buttons, you will no doubt have noticed how
repetitive the code is. The code on each button differs from the code on the others

- ad

%% é ,ch01.12472 Page 31 Thursday, April 19, 2001 12:58 PM

Building a Multiple-Choice Quiz 31

by only a few text characters. That’s not exactly efficient programming. Our button
code cries out for some kind of centralized entity that records the answer and
advances to the next screen in the quiz. In Chapter 9 we’ll see how to centralize
our code with functions.

Building the Quiz End

Our quiz is nearly complete. We now have two questions working with an
answer-tracking script that lets the user answer the questions and progress through
the quiz. We still need a quiz-ending screen where we tell the user how well he
fared.

To build our quiz-end screen, we need to do some basic Flash production and
some scripting. Let’s do the production first:

1. At frame 20 of the gquestion 2 layer, add a blank keyframe. This prevents
Question 2 from appearing underneath the contents of our quiz-end screen.

2. At frame 20 of the guiz end layer, add a blank keyframe.

3. While you're still on that frame, put the following text on the Stage: “Thank
you for taking the quiz. Your final score is: /2.” Make sure to leave a decent
amount of blank space between “is:” and “/2.” We'll put the user’s score there.

4. At frame 20 of the scripts layer, add a blank keyframe.

That takes care of the production work for our quiz-end screen. Your end screen
should look something like the one shown in Figure 1-9.

D labels e« []|[Fint |" 02 quizErd
[quizend oo m 0
[question 2 O . O

[? housing
[+) [¢7 ym]

L 0
. 0
I:ﬂ RN |

version 1

2 welcome to the flash quiz. in this version of the gquiz, the questions are
hard-wired into the movie using traditional static text. the number of
questions and answers can not be altered programmatically. scripting is

2! placed directly on the answer buttons and the quiz end frame.

thank you for taking the quiz

your final score is: :

Figure 1-9. Judgment day

é ,ch01.12472 Page 32 Thursday, April 19, 2001 12:58 PM

32 Chapter 1: A Gentle Introduction for Non-Programmers

Now let’s work on the quiz-end script. When the playhead lands on our quizEnd
frame, we want to calculate the user’s score. We need a calculation script to exe-
cute when the playhead reaches frame 20. Because any script placed on a key-
frame in the timeline is automatically executed when the playhead enters that
frame, we can simply attach our calculation script to the keyframe we added at
frame 20 of the scripts layer.

In the calculation script, we first determine the user’s score, and then we display
that score on the screen:

// Tally up the user's correct answers
if (glanswer == 3){
totalCorrect = totalCorrect + 1;
}
if (g2answer == 2){
totalCorrect++;

}

// Show the user's score in an on-screen text field

displayTotal = totalCorrect;
Lines 1 and 8 are code comments that summarize the functionality of the two sec-
tions of the script. On line 2, the first of two conditionals in our calculation script
begins. In it, we see our glanswer variable put to use:

if (glanswer == 3){

The keyword iftells the interpreter we're about to provide a list of statements that
should be executed only if a certain condition is met. The terms of that condition
are described in the parentheses that follow the if keyword: (glanswer == 3), and
the opening curly brace begins the list of statements to be conditionally executed.
Therefore, line 2 translates into, “If the value of gqlanswer is equal to 3, then exe-
cute the statements contained in the following curly braces.”

But how exactly does the condition glanswer == 3 work? Well, let’s break the
phrase down. We recognize glanswer as the variable in which we’ve stored the
user’s answer to Question 1. The number 3 indicates the correct answer to Ques-
tion 1, because movie clips first appeared in Flash 3. The double equal sign (==
between our variable and the number 3 is the equality comparison operator,
which compares two expressions. If the expression on its left (glanswer) equals
the one on its right (3), our condition is met, and the statements within the curly
braces are executed. If not, our condition is not met, and the statements within the
curly braces are skipped.

Flash has no way of knowing the right answers to our quiz questions. Checking if
glanswer is equal to 3 is our way of telling Flash to check if the user got Ques-
tion 1 right. If he did, we tell Flash to add one to his total score as follows:

totalCorrect = totalCorrect + 1;

4~ ~4]e

é ,ch01.12472 Page 33 Thursday, April 19, 2001 12:58 PM

Building a Multiple-Choice Quiz 33

Line 3 says, “Make the new value of totalCorrect equal to the old value of
totalCorrect plus one,” (i.e., increment totalCorrect). Incrementing a vari-
able is so common that it has its own special operator, ++.

So instead of using this code:
totalCorrect = totalCorrect + 1;

We normally write:
totalCorrect++;

which does exactly the same thing, but more succinctly.

At line 4, we end the block of statements to execute if our first condition is met:
}

Lines 5 through 7 are another condition:

if (g2answer == 2){
totalCorrect++;
}
Here we're checking whether the user answered Question 2 correctly (MP3 audio
support first appeared in Flash 4). If the user chose the second answer, we add
one to totalCorrect using the increment operator ++.

Because there are only two questions in our quiz, we’re done tallying the user’s
score. For each question that the user answered correctly, we added one to
totalCorrect, so totalCorrect now contains the user’s final score. The only
thing left is to show the user his score, via line 9, the last line of our quiz-end
script:

displayTotal = totalCorrect;

You already know enough about variables to guess that the statement on line 9
assigns the value of totalCorrect to the variable displayTotal. But how does
that make the score appear on screen? So far, it doesn’t. In order to make the
score appear on screen, we need to create a special kind of variable called a text
Sfield variable that has a physical representation on the screen. Let’s make one now
so you can see how it works:

1. Select the Text tool.
2. On the quiz end layer, click frame 20.

3. Place your pointer just before the text “/2” that you created earlier, then click
the Stage.

4. Drag out a text box big enough to hold a single number.

5. Choose Text — Options.

4~ ~4]e

é ,ch01.12472 Page 34 Thursday, April 19, 2001 12:58 PM

34 Chapter 1: A Gentle Introduction for Non-Programmers

6. In the Text Options panel, change Static Text to Dynamic Text.
7. In the Variable text field, type displayTotal.

The variable displayTotal now has a screen representation. If we change
displayTotal in our script, the corresponding text field variable will be updated
on the screen.

Testing Our Quiz

Well, that’s it. Our quiz is finished. You can now check whether the quiz works
using Control — Test Movie. Click on the answers in different combinations to see
if your quiz is keeping score correctly. You can even create a restart button by
attaching the following code to a new button:

on (release) {
gotoAndStop ("init")
}
Because totalCorrect is set to 0 in the code on the init frame, the score will
reset itself each time you send the playhead to init.

If you find that your quiz isn’t working, try comparing it with the sample quiz pro-
vided at the online Code Depot. You may also want to investigate the trouble-
shooting techniques described in Chapter 19, Debugging.

Onward!

So how does it feel? You've learned a bunch of phrases, some grammar, some
vocabulary, and even had a drawn-out conversation with Flash (the multiple-
choice quiz). Quite a rich first day of language school, I'd say.

As you can see, there’s a lot to learn about ActionScript, but you can also do quite
a bit with just a little knowledge. Even the amount you know now will give you
plenty to play around with. Over the rest of this book, we’ll reinforce the funda-
mentals you've learned by exploring them in more depth and showing them in
concert with real examples. Of course, we'll also cover some topics that haven’t
even been introduced yet.

Remember: think communication, think cooperation, and speak clearly. And if you
find yourself doing any fantastically engaging work or art that you'd like to share
with others, send it over to me at htip://ww.moock.org/webdesign/flash/contact.htmi.
Now that you have a practical frame of reference, you'll be better able to appreci-
ate and retain the foundational knowledge detailed over the next few chapters. It

will give you a deeper understanding of ActionScript, enabling you to create more
complex movies.

- ad

