
35
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2

2
Variables

In a typical scripted movie, we have to track and manipulate everything from
frame numbers to a user’s password to the velocity of a photon torpedo fired from
a spaceship. In order to manage and retrieve all that information, we need to store
it in variables, the primary information-storage containers of ActionScript.

A variable is a like a bank account that, instead of holding money, holds informa-
tion (data). Creating a new variable is like setting up a new account; we establish
a place to store something we’ll need in the future. And just as every bank account
has an account number, every variable has a name associated with it that is used
to access the data in the variable.

Once a variable is created, we can put new data into it as often as we want—
much like depositing money into an account. Or we can find out what’s in a vari-
able using the variable’s name—much like checking an account balance. If we no
longer need our variable, we can “close the account” by deleting the variable.

The key feature to note is that variables let us refer to data that either changes or
is calculated when a movie plays. Just as a bank account’s number remains the
same even though the account balance varies, a variable’s name remains fixed
even though the data it contains may change. Using that fixed reference to access
changing content, we can perform complex calculations, keep track of cards in a
card game, save guest book entries, or send the playhead to different locations
based on changing conditions.

Is that a gleam of excitement I see in your eye? Good, I thought I might have lost
you with all that talk about banks. Let’s start our exploration of variables by see-
ing how to create them.

,ch02.12597 Page 35 Thursday, April 19, 2001 12:58 PM

36 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Creating Variables (Declaration)
Creating a variable is called declaration. Declaration is the “open an account” step
of our bank metaphor, where we formally bring the variable into existence. When
a variable is first declared, it is empty—a blank page waiting to be written upon.
In this state, a variable contains a special value called undefined (indicating the
absence of data).

To declare a new variable, we use the var statement. For example:

var speed;
var bookTitle;
var x;

The word var tells the interpreter that we’re declaring a variable, and the text that
follows, such as speed, bookTitle, or x, becomes our new variable’s name. We
can create variables anywhere we can attach code: on a keyframe, a button, or a
movie clip.

We can also declare several variables with one var statement, like this:

var x, y, z;

However, doing so impairs our ability to add comments next to each variable.

Once a variable has been created, we may assign it a value, but before we learn
how to do that, let’s consider some of the subtler details of variable declaration.

Automatic Variable Creation

Many programming languages require variables to be declared before data may be
deposited into them; failure to do so would cause an error. ActionScript is not that
strict. If we assign a value to a variable that does not exist, the interpreter will cre-
ate a new variable for us. The bank, to continue that analogy, automatically opens
an account when you try to make your first deposit.

This convenience comes at a cost, though. If we don’t declare our variables our-
selves, we have no central inventory to consult when examining our code. Fur-
thermore, explicitly declaring a variable with a var statement can sometimes yield
different results than allowing a variable to be declared implicitly (i.e., automati-
cally). It’s safest to declare first and use later (i.e., explicit declaration), as shown
throughout this book.

Legal Variable Names

Before running off to make any variables, be aware that variable names:

,ch02.12597 Page 36 Thursday, April 19, 2001 12:58 PM

Creating Variables (Declaration) 37

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• Must be composed exclusively of letters, numbers, and underscores. (No
spaces, hyphens, or punctuation allowed.)

• Must start with a letter or an underscore.

• Must not exceed 255 characters. (Okay, okay, that’s a lie, but reevaluate your
naming scheme if your variable names exceed 255 characters.)

• Are case-insensitive (upper- and lowercase are treated identically but you
should be consistent nonetheless).

These are legal variable names:

var first_name;
var counter;
var reallyLongVariableName;

These are illegal variable names that would cause errors:

var 1first_name; // Starts with a number
var variable name with spaces; // Contains spaces
var another-illegal-name; // Contains a hyphen

Creating dynamically named variables

Although you’ll rarely, if ever, use dynamically created variable names, it’s possi-
ble to generate the name of a variable programmatically. To create a variable
name from any expression, use the set statement. For example, here we assign the
value “bruce” to player1name:

var i = 1;
set ("player" + i + "name", "bruce");

Arrays and objects, discussed in later chapters, provide us with a much more pow-
erful means of tracking dynamically named data and should be used instead of
dynamic variable names.

Declare Variables at the Outset

It’s good practice to declare your variables at the beginning of every movie’s main
script space, which is usually the first keyframe that comes after a movie’s pre-
loader. Be sure to add a comment explaining each variable’s purpose for easy
identification later. The beginning of a well-organized script might look like this:

// ^^^^^^^^^^^^^^^^^^^^
// Initialize variables
// ^^^^^^^^^^^^^^^^^^^^
var ballSpeed; // Velocity of ball, max 10
var score; // Player's current score
var hiScore; // High score (not saved between sessions)
var player1; // Name of player 1, supplied by user

,ch02.12597 Page 37 Thursday, April 19, 2001 12:58 PM

38 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

We can give variables an initial value at the same time we create them, as follows:

var ballSpeed = 5; // Velocity of ball, max 10
var score = 0; // Player's current score
var hiScore = 0; // High score (not saved between sessions)

Assigning Variables
Now comes the fun part—putting some data into our variables. If you’re still play-
ing along with the bank analogy, this is the “deposit money into our account”
step. To assign a variable a value, we use:

variableName = value;

where variableName is the name of a variable, and value is the data we’re
assigning to that variable. Here’s an applied example:

bookTitle = "ActionScript: The Definitive Guide";

On the left side of the equal sign, the word bookTitle is the variable’s name (its
identifier). On the right side of the equal sign, the phrase “ActionScript: The Defini-
tive Guide” is the variable’s value—the datum you’re depositing. The equal sign
itself is called the assignment operator. It tells Flash that you want to assign (i.e.,
deposit) whatever is on the right of the equal sign to the variable shown on the left.
If the variable on the left doesn’t exist yet, Flash creates it (though relying on the
interpreter to implicitly create variables isn’t recommended).

Here are two more variable assignment examples:

speed = 25;
output = "thank you";

The first example assigns the integer 25 to the variable speed, showing that vari-
ables can contain numbers as well as text. We’ll see shortly that they can contain
other kinds of data as well. The second example assigns the text “thank you” to
the variable output. Notice that we use straight double quotation marks (" ") to
delimit a text string in ActionScript.

Now let’s look at a slightly more complicated example that assigns y the value of
the expression 1 + 5:

y = 1 + 5;

When the statement y = 1 + 5; is executed, 1 is first added to 5, yielding 6, and
then 6 is assigned to y. The expression on the right side of the equal sign is evalu-
ated (calculated or resolved) before setting the variable on the left side equal to
that result. Here we assign an expression that contains the variable y to another
variable, z:

z = y + 4;

,ch02.12597 Page 38 Thursday, April 19, 2001 12:58 PM

Changing and Retrieving Variable Values 39

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once again, the expression on the right of the equal sign is evaluated and the
result is then assigned to z. The interpreter retrieves the current value of y (it
checks its account balance, so to speak) and adds 4 to it. Because the value of y is
6, z will be set to 10.

The syntax to assign any data—whether numbers, text, or any other type—to a
variable is similar regardless of the datatype. For example, we haven’t studied
arrays yet, but you should already recognize the following as a variable assign-
ment statement:

myList = ["John", "Joyce", "Sharon", "Rick", "Megan"];

As before, we put the variable name on the left, the assignment operator (the
equal sign) in the middle, and our desired value on the right.

To assign the same value to multiple variables in a hurry, we may piggyback
assignments alongside one another, like this:

x = y = z = 10;

Variable assignment always works from right to left. The preceding statement
assigns 10 to z, then assigns the value of z to y, then assigns the value of y to x.

Changing and Retrieving Variable Values
After we’ve created a variable, we may assign and reassign its value as often as we
like, as shown in Example 2-1.

Notice that we changed the variable x’s datatype from numeric to text data by sim-
ply assigning it a value of the desired type. Some programming languages don’t
allow the datatype of a variable to change but ActionScript does.

Of course, creating variables and assigning values to them is useless if you can’t
retrieve the values later. To retrieve a variable’s value, simply use the variable’s
name wherever you want its value to be used. Anytime a variable’s name appears
(except in a declaration or on the left side of an assignment statement), the name
is converted to the variable’s value. Here are some examples:

newX = oldX + 5; // Set newX to the value of oldX plus 5
ball._x = newX; // Set the horizontal position of the
 // ball movie clip to the value of newX
trace(firstName); // Display the value of firstName in the Output window

Example 2-1. Changing Variable Values

var firstName; // Declare the variable firstName
firstName = "Graham"; // Set the value of firstName
firstName = "Gillian"; // Change the value of firstName
firstName = "Jessica"; // Change firstName again
firstName = "James"; // Change firstName again
var x = 10; // Declare x and assign a numeric value
x = "loading...please wait..."; // Assign x a text value

,ch02.12597 Page 39 Thursday, April 19, 2001 12:58 PM

40 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Note that in the expression ball._x, ball is a movie clip’s name, and the ._x
indicates its x-coordinate property (i.e., horizontal position on stage). We’ll learn
more about properties later. The last line, trace(firstName), displays a vari-
able’s value while a script is running, which is handy for debugging your code.

Checking Whether a Variable Has a Value

Occasionally we may wish to verify that a variable has been assigned a value
before we make reference to it. As we learned earlier, a variable that has been
declared but never assigned a value contains the special “non-value,” undefined.
To determine whether a variable has been assigned a value, we compare that vari-
able’s value to the undefined keyword. For example:

if (someVariable != undefined) {
 // Any code placed here is executed only if someVariable has a value
}

Note the use of the inequality operator, !=, which determines whether two values
are not equal.

Types of Values
The data we use in ActionScript programming comes in a variety of types. So far
we’ve seen numbers and text, but other types include Booleans, arrays, functions,
and objects. Before we cover each datatype in detail, let’s examine some datatype
issues that specifically relate to variable usage.

Automatic Typing

Any ActionScript variable can contain any type of data, which may seem unre-
markable, but the ability to store any kind of data in any variable is actually a bit
unusual. Languages like C++ and Java use typed variables; each variable can
accept only one type of data, which must be specified when the variable is
declared. ActionScript variables are automatically typed—when we assign data to
a variable, the interpreter sets the variable’s datatype for us.

Not only can ActionScript variables contain any datatype, they can also dynami-
cally change datatypes. If we assign a variable a new value that has a different
type than the variable’s previous value, the variable is automatically retyped. So
the following code is legal in ActionScript:

x = 1; // x is a number
x = "Michael"; // x is now a string
x = [4, 6, "hello"]; // x is now an array
x = 2; // x is a number again

,ch02.12597 Page 40 Thursday, April 19, 2001 12:58 PM

Types of Values 41

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In languages like C++ or Java that do not support automatic retyping, data of the
wrong type would be converted to the variable’s existing datatype (or would
cause an error if conversion could not be performed). Automatic and dynamic typ-
ing have some important ramifications that we’ll consider in the following sections.

Automatic Value Conversion

In some contexts, ActionScript expects a specific type of data. If we use a variable
whose value does not match the expected type, the interpreter attempts to con-
vert the data. For example, if we use a text variable where a number is needed,
the interpreter will try to convert the variable’s text value to a numeric value for
the sake of the current operation. In Example 2-2, z is set to 2. Why? Because the
subtraction operator expects a number, so the value of y is converted from the
string “4” to the number 4, which is subtracted from 6 (the value of x), yielding
the result 2.

Conversely, if we use a numeric variable where a string is expected, the inter-
preter attempts to convert the number to a string. In Example 2-3, z is set to the
string “64”, not the number 10. Why? Because the second operand in the expres-
sion x + y is a string. Therefore, the (+) performs string concatenation instead of
mathematical addition. The value of x (6) is converted to the string “6” and then
concatenated with the string “4” (the value of y), yielding the result “64”.

The automatic type conversion that occurs when evaluating a variable as part of an
expression is performed on a copy of the variable’s data—it does not affect the origi-
nal variable’s type. A variable’s type changes only when the variable is assigned a
data value that does not match its previous value’s type. So at the conclusion of
Example 2-2 and Example 2-3, y remains a string, and x remains a number.

Notice that the operator on line 3 (– in Example 2-2, + in Example 2-3), has a pro-
found impact on the value assigned to z. In Example 2-2 the string “4” becomes the
number 4, whereas in Example 2-3 the opposite occurs (the number 6 becomes the
string “6”), because the rules for datatype conversion are different for the + opera-
tor than for the – operator. We’ll cover data conversion rules in Chapter 3, Data
and Datatypes, and operators in Chapter 5, Operators.

Example 2-2. Automatic String-to-Number Conversion

x = 6; // x is a number, 6
y = "4"; // y is a string, "4"
z = x - y; // This sets z to the number 2

Example 2-3. Automatic Number-to-String Conversion

x = 6; // x is a number, 6
y = "4"; // y is a string, "4"
z = x + y; // This sets z to the string "64"

,ch02.12597 Page 41 Thursday, April 19, 2001 12:58 PM

42 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Determining the Type Manually

Automatic datatyping and conversion can be convenient, but as Example 2-2 and
Example 2-3 illustrate, may also produce unexpected results. Before performing
commands that operate on mixed datatypes, you may wish to determine a vari-
able’s datatype using the typeof operator:

productName = "Macromedia Flash"; // String value
trace(typeof productName); // Displays: "string"

Once we know a variable’s type, we can proceed conditionally. Here, for exam-
ple, we check whether a variable is a number before proceeding:

if (typeof age == "number"){
 // okay to carry on
} else {
 trace ("Age isn't a number"); // Display an error message
}

For full details on the typeof operator, see Chapter 5.

Variable Scope
Earlier we learned how to create variables and retrieve their values using variables
attached to a single frame of the main timeline of a Flash document. When a doc-
ument contains multiple frames and multiple movie clip timelines, variable cre-
ation and value retrieval becomes a little more complicated.

To illustrate why, let’s consider several scenarios.

Scenario 1

Suppose we were to create a variable, x, in frame 1 of the main timeline. After cre-
ating x, we set its value to 10:

var x;
x = 10;

Then, in the next frame (frame 2), we attach the following code:

trace(x);

When we play our movie, does anything appear in the Output window? We cre-
ated our variable in frame 1, but we’re attempting to retrieve its value in frame 2;
does our variable still exist? Yes.

When you define a variable on a timeline, that variable is accessible
from all the other frames of that timeline.

,ch02.12597 Page 42 Thursday, April 19, 2001 12:58 PM

Variable Scope 43

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Scenario 2

Suppose we create and set x as we did in Scenario 1, but instead of placing the
variable-setting code on frame 1 directly, we place it on a button in frame 1. Then,
on frame 2, we attach the same code as before:

trace(x);

Does Scenario 2 also work? Yes. Because x is attached to our button, and our but-
ton is attached to the main timeline, our variable is indirectly attached to the main
timeline. We may, therefore, access the variable from frame 2 as we did before.

Scenario 3

Suppose we create a variable named secretPassword on frame 1 of the main
timeline. When the movie plays, the user must guess the password in order to gain
access to a special section of the movie.

In addition to declaring secretPassword on frame 1, we create a function that
compares the user’s guess to the real password. Here’s our code:

var secretPassword;
secretPassword = "yppah";

function checkPassword() {
 if (userPassword == secretPassword) {
 gotoAndStop("accessGranted");
 } else {
 gotoAndStop("accessDenied");
 }
}

Suppose we ask the user to enter her password on frame 30. She enters a pass-
word into an input text field variable named userPassword, which we compare
to our secretPassword variable using the checkPassword() function on frame 1.
If our password-checking code is defined on frame 1, but userPassword isn’t
defined until frame 30, does the userPassword variable exist when we call our
checkPassword() function?

The answer, again, is yes. Even though userPassword is defined on a later frame
than our checkPassword() function, it is still part of the same timeline.

Any variable declared on a timeline is available to all the scripts of
its timeline for as long as that timeline exists.

,ch02.12597 Page 43 Thursday, April 19, 2001 12:58 PM

44 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Variable Accessibility (Scope)

The three scenarios presented earlier explore issues of scope. A variable’s scope
describes when and where the variable can be manipulated by the code in a
movie. A variable’s scope defines its life span and its accessibility to other blocks
of code in our scripts. To determine a variable’s scope, we must answer two ques-
tions: (a) how long does the variable exist? and (b) from where in our code can
we set or retrieve the variable’s value?

In traditional programming, variables are often broken into two general scope cat-
egories: global and local. Variables that are accessible throughout an entire pro-
gram are called global variables. Variables that are accessible only to limited
sections of a program are called local variables. Though Flash supports conven-
tional local variables, it does not support true global variables. Let’s find out why.

Movie Clip Variables

As we saw in the three earlier scenarios, a variable defined on a timeline is avail-
able to all the scripts on that timeline—from the first frame to the last frame—
whether the variable is declared on a frame or a button. But what happens if we
have more than one timeline in a movie, as described in Scenario 4?

Scenario 4

Suppose we have two basic geometric shapes, a square and a circle, defined as
movie clip symbols.

On frame 1 of the square clip symbol, we set the variable x to 3:

var x;
x = 3;

On frame 1 of the circle clip symbol, we set the variable y to 4:

var y;
y = 4;

We place instances of those clips on frame 1, layer 1 of the main timeline of our
movie and name our instances square and circle.

First question: If we attach the following code to frame 1 of the main movie time-
line (upon which square and circle have been placed), what appears in the
Output window? Here’s the code:

trace(x);
trace(y);

Answer: Nothing appears in the Output window. The variables x and y are
defined on the timelines of our movie clips, not our main timeline.

,ch02.12597 Page 44 Thursday, April 19, 2001 12:58 PM

Variable Scope 45

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Variables attached to a movie clip timeline (like that of square or
circle) have scope limited to that timeline. They are not directly
accessible to scripts on other timelines, such as our main movie
timeline.

Second question: If we were to place the trace(x) and trace(y) statements on
frame 1 of our square movie clip instead of frame 1 of our main movie timeline,
what would appear in the Output window? Here’s the code:

Answer: The value of x, which is 3, and nothing else. The value of x is displayed
because x is defined on the timeline of square and is therefore accessible to the
trace() command, which also resides on that timeline. But the value of y, which is
4, doesn’t appear in the Output window because y is defined in circle, which is
a separate timeline.

You can now see why I said that ActionScript doesn’t support true global vari-
ables. Global variables are variables that are accessible throughout an entire pro-
gram, but in Flash, a variable attached to an individual timeline is directly
accessible only to the scripts on that timeline. Since all variables in Flash are
defined on timelines, no variable can be guaranteed to be directly accessible to all
the scripts in a movie. Hence, no variable can legitimately be called global.

To prevent confusion, we refer to variables attached to timelines as timeline vari-
ables or movie clip variables. However, it is possible to simulate global variables
using the Object class. To create a variable that is available on all timelines, use
the following statement:

Object.prototype.myGlobalVariable = myValue;

For example:

Object.prototype.msg = "Hello world";

This technique (and the reason it works) is discussed under “The end of the inher-
itance chain” in Chapter 12, Objects and Classes.

Accessing Variables on Different Timelines

Even though variables on one timeline are not directly accessible to the scripts on
other timelines, they are indirectly accessible. To create, retrieve, or assign a vari-
able on a separate timeline, we use dot syntax, a standard notation common to
object-oriented programming languages such as Java, C++, and JavaScript. Here’s
the generic dot syntax phrasing we use to address a variable on a separate timeline:

movieClipInstanceName.variableName

,ch02.12597 Page 45 Thursday, April 19, 2001 12:58 PM

46 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

That is, we refer to a variable on another timeline using the name of the clip that
contains the variable, followed by a dot, then the variable name itself. In our ear-
lier scenario, for example, from the main timeline we would refer to the variable x
in the square clip as:

square.x

Again, from the main timeline, we refer to the variable y in the circle clip as:

circle.y

We can use these references from our main movie timeline to assign and retrieve
variables in square like this:

square.z = 5; // Assign 5 to z in square
var mainZ; // Create mainZ on the main timeline
mainZ = square.z; // Assign mainZ the value of z in square

However, with just the clip.variable syntax alone, we can’t refer to variables in
square from our circle clip. If we were to put a reference to square.x on a
frame in circle, the interpreter would try to find a clip called square inside of
circle, but square lives on the main timeline. So, we need a mechanism that
lets us refer to the timeline that contains the square clip (in this case, the main
timeline) from the circle clip. That mechanism comes in the form of two special
properties: _root and _parent.

The _root and _parent properties

The _root property is a direct reference to the main timeline of a movie. From
any depth of nesting in a movie clip structure, we can always address variables on
the main movie timeline using _root, like this:

_root.mainZ // Access the variable mainZ on the main timeline
_root.firstName // Access the variable firstName on the main timeline

We can even combine a reference to _root with references to movie clip instances,
drilling down the nested structure of a movie in the process. For example, we can
address the variable x inside the clip square that resides on the main movie time-
line, as:

_root.square.x

That reference works from anywhere in our movie, no matter what the depth of
clip nesting, because the reference starts at our main movie timeline, _root.
Here’s another nested example showing how to access the variable area in the
instance triangle that resides on the timeline of the instance shapes:

_root.shapes.triangle.area

,ch02.12597 Page 46 Thursday, April 19, 2001 12:58 PM

Variable Scope 47

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Any reference to a variable that starts with the _root keyword is called an abso-
lute reference because it describes the location of our variable in relation to a
fixed, immutable point in our movie: the main timeline.

There are times, however, when we want to refer to variables on other timelines
without referring to the main timeline of a movie. To do so, we use the _parent
property, which refers to the timeline upon which the current movie clip instance
resides. For example, from code attached to a frame of the clip square, we can
refer to variables on the timeline that contains square using this syntax:

_parent.myVariable

References that start with the keyword _parent are called relative references
because they are resolved relative to the location of the clip in which they occur.

Returning to our earlier example, suppose we have a variable, size, defined on
the main timeline of a movie. We place a clip instance named shapes on our
main movie timeline, and on the shapes timeline we define the variable color.
Also on the shapes timeline, we place a clip named triangle, as shown in
Figure 2-1.

To display the value of the variable color (which is in the shapes clip) from
code attached to the timeline of triangle, we could use an absolute reference
starting at the main timeline, like this:

trace(_root.shapes.color);

But that ties our code to the main movie timeline. To make our code more flexi-
ble, we could instead use the _parent property to create a relative reference, like
this:

trace(_parent.color);

Figure 2-1. A sample movie clip hierarchy

main timeline

size variable

shapes instance

color variable

triangle instance

,ch02.12597 Page 47 Thursday, April 19, 2001 12:58 PM

48 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Our first approach (using _root) works from a top-down perspective; it starts at
the main timeline and descends through the movie clip hierarchy until it reaches
the color variable. The second approach (using _parent) works from a bottom-
up perspective; it starts with the clip that contains the trace() statement (the
triangle clip), then ascends one level up the clip structure where it finds the
color variable.

We can use _parent twice in a row to ascend the hierarchy of clips and access
our size variable on the main timeline. Here we attach some code to triangle
that refers to size on the main movie timeline:

trace(_parent._parent.size);

Using the _parent property twice in succession takes us up two levels, which in
this context brings us to the main timeline of the movie.

Your approach to variable addressing will depend on what you want to happen
when you place instances of a movie clip symbol on various timelines. In our
triangle example, if we wanted our reference to color to always point to
color as defined in the shapes clip, then we would use the _root syntax, which
gives us a fixed reference to color in shapes. But if we wanted our reference to
color to refer to a different color variable, depending on which timeline held a
given triangle instance, we would use the _parent syntax.

Accessing variables on different document levels

The _root property refers to the main movie timeline of the current level (i.e., the
current document), but the Flash Player can accommodate multiple documents in
its document stack. The main timeline of any movie loaded in the Player docu-
ment stack may be referenced using _leveln, where n is the level number on
which the movie resides. Level numbers start with 0, such as _level0, _level1,
_level2, _level3, and so on. For information on loading multiple movies, see
Chapter 13, Movie Clips. Here are some examples showing multiple-level variable
addressing:

_level1.firstName // firstName on level1's main timeline
_level4.ball.area // area in ball clip on level4's main timeline
_level0.guestBook.email // email in guestBook clip on level0's timeline

When addressing variables across movie clip instance timelines using
dot syntax, make sure that you have named your clip instances on the
Stage and entered the names correctly when referring to them in your
code. If your instances are not named, your code will not work even
if it is otherwise syntactically correct. Unnamed instances and mis-
spelled instance names are extremely common sources of problems.

,ch02.12597 Page 48 Thursday, April 19, 2001 12:58 PM

Variable Scope 49

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Flash 4 versus Flash 5 variable access syntax

The Flash 4–style slash-colon constructions such as /square:area have been
superseded by Flash 5’s dot syntax, a much more convenient way to refer to vari-
ables and timelines. The old syntax is deprecated and no longer recommended.
Table 2-1 shows equivalencies between Flash 4 and Flash 5 syntax when addressing
variables. See Appendix C, Backward Compatibility, for other syntactical differences.

* The “current clip timeline” is the timeline that contains the code with the variable reference.

Movie Clip Variable Life Span

Earlier, we said that the scope of a variable answers two questions: (a) how long
does the variable exist? and (b) from where in our code can we set or retrieve the
variable’s value? For movie clip variables, we now know the factors involved in
answering the second question. But we skipped answering the first question. Let’s
return to it now with one final variable-coding scenario.

Table 2-1. Flash 4 Versus Flash 5 Variable Addressing Syntax

Flash 4 Syntax Flash 5 Syntax Refers to . . .

/ _root Movie’s main timeline

/:x _root.x Variable x on movie’s main timeline

/clip1:x _root.clip1.x Variable x in instance clip1 on movie’s
main timeline

/clip1/clip2:x _root.clip1.clip2.x Variable x in instance clip2 within
instance clip1 within the main movie
timeline

../ _parent Timeline upon which the current clip
resides (one level up from current clip
timeline*)

../:x _parent.x Variable x on timeline upon which the cur-
rent clip resides (one level up from current
clip timeline)

../../:x _parent._parent.x Variable x on timeline that contains the clip
that contains the current clip (two levels up
from current clip timeline)

clip1:x clip1.x Variable x in instance clip1, where clip1
resides on the current timeline

clip1/clip2:x clip1.clip2.x Variable x in instance clip2, where clip2
resides within clip1, which, in turn,
resides on current timeline

_level1:x _level1.x Variable x on the main timeline of a movie
loaded onto level 1

_level2:x _level2.x Variable x on the main timeline of a movie
loaded onto level 2

,ch02.12597 Page 49 Thursday, April 19, 2001 12:58 PM

50 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Scenario 5

Suppose we create a new movie with two keyframes. On frame 1, we place a clip
instance, ball. On the ball timeline, we create a variable, radius. Frame 2 of
our main timeline is blank (the ball instance is not present there).

From frame 1 of the main movie timeline, we can find out the value of radius
using this code:

trace(ball.radius);

Now the question: If we move that line of code from frame 1 to frame 2 of the
main timeline, what appears in the Output window when our movie plays?

Answer: Nothing appears. When the ball clip is removed from the main timeline
on frame 2, all its variables are destroyed in the process.

Movie clip variables last only while the clip in which they reside is
present on stage. Variables defined on the main timeline of a Flash
document persist within each document but are lost if the document
is unloaded from the Player (either via the unloadMovie() function or
because another movie is loaded into the movie’s level).

A variable’s life span is important when scripting movies that contain movie clips
placed across multiple frames on various timelines. Always make sure that any clip
you’re addressing is present on a timeline before you try to use the variables in
that clip.

Local Variables

Movie clip variables are scoped to movie clips and persist as long as the movie
clip on which they are defined exists. Sometimes, that’s longer than we need them
to live. For situations in which we need a variable only temporarily, ActionScript
offers variables with local scope (i.e., local variables), which live for a much
shorter time than normal movie clip variables.

Local variables are used in functions and older Flash 4–style subroutines. If you
haven’t worked with functions or subroutines before, you can skip the rest of this
section and come back to it once you’ve read Chapter 9, Functions.

Functions often employ variables that are not needed outside the function. For
example, suppose we have a function that displays all of the elements of a speci-
fied array:

,ch02.12597 Page 50 Thursday, April 19, 2001 12:58 PM

Variable Scope 51

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

function displayElements(theArray) {
 var counter = 0;
 while(counter < theArray.length) {
 trace("Element " + counter + ": " + theArray[counter]);
 counter++;
 }
}

The counter variable is required to display the array but has no use thereafter.
We could leave it defined on the timeline, but that’s bad form for two reasons: (a)
if counter persists, it takes up memory during the rest of our movie; and (b) if
counter is accessible outside our function, it may conflict with other variables
named counter. We would, therefore, like counter to die after the
displayElements() function has finished.

To cause counter to be automatically deleted at the end of our function, we
define it as a local variable. Unlike movie clip variables, local variables are
removed from memory (deallocated) automatically by the interpreter when the
function that defines them finishes.

To specify that a variable should be local, declare it with the var keyword from
inside your function, as in the preceding displayElements() example.

Take heed though; when placed outside of a function, the var statement creates a
normal timeline variable, not a local variable. As shown in Example 2-4, the loca-
tion of the var statement makes all the difference.

Variables within functions need not be local. We can create or change a movie
clip variable from inside a function by omitting the var keyword. If we do not use
the var keyword, but instead simply assign a value to a variable, Flash treats that
variable as a nonlocal variable under some conditions. Consider this variable
assignment inside a function:

function setHeight(){
 height = 10;
}

The effect of the statement height = 10; depends on whether height is a local
variable or movie clip variable. If height is a previously declared local variable
(which it is not in the example at hand), the statement height = 10; simply
modifies the local variable’s value. If there is no local variable named height, as
is the case here, the interpreter creates a movie clip (nonlocal) variable named
height and sets its value to 10. As a nonlocal variable, height persists even after
the function finishes.

,ch02.12597 Page 51 Thursday, April 19, 2001 12:58 PM

52 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 2-4 demonstrates local and nonlocal variable usage.

Note that it is possible (though confusing and ill-advised) to have both a local and
a nonlocal variable that share the same name within a script but have different
scopes. Example 2-5 shows such a case.

Local variables in subroutines

Although functions are the preferred mechanism for producing portable code
modules, Flash 5 still supports Flash 4–style subroutines. In Flash 4, a subroutine
could be created by attaching a block of code to a frame with a label. Later, the
subroutine could be executed remotely via the Call action. But in Flash 4, any
variable declared in a subroutine was nonlocal and persisted for the lifetime of the
timeline on which it was defined. In Flash 5, you can create local variables in sub-
routines the same way we created them in functions—using the var statement.
However, variables defined with var in a subroutine are created as local variables
only when the subroutine is executed via the Call function. If the script on the
subroutine frame is executed as a result of the playhead simply entering the frame,
the var statement declares a normal timeline nonlocal variable. Regardless, the
more modern functions and local function variables should be used instead of sub-
routines.

Example 2-4. Local and Nonlocal Variables

var x = 5; // New nonlocal variable, x, is now 5
function variableDemo(){
 x = 10; // Nonlocal variable, x, is now 10
 y = 20; // New nonlocal variable, y, is now 20
 var z = 30; // New local variable, z, is now 30
 trace(x + "," + y + "," + z); // Send variable values to Output window
}
variableDemo(); // Call our function. Displays: 10,20,30
trace(x); // Displays: 10 (reassignment in our function was permanent)
trace(y); // Displays: 20 (nonlocal variable, y, still exists)
trace(z); // Displays nothing (local variable, z, has expired)

Example 2-5. Local and Nonlocal Variables with the Same Name

var myColor = "blue";
function hexRed(){
 var myColor = "#FF0000";
 return myColor;
}
trace(hexRed()); // Displays: #FF0000 (the local variable myColor)
trace(myColor); // Displays: "blue" (setting the local variable,

// myColor, to #FF0000 did not affect the nonlocal version)

,ch02.12597 Page 52 Thursday, April 19, 2001 12:58 PM

Some Applied Examples 53

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Some Applied Examples
We’ve had an awful lot of variable theory. How about showing some of these con-
cepts in use? The following examples provide three variable-centric code samples.
Refer to the comments for an explanation of the code.

Example 2-6 chooses a random destination for the playhead of a movie.

Example 2-7 determines the distance between two clips. A working version of this
example is available from the online Code Depot.

Example 2-8 converts between Fahrenheit and Celsius. A working version is avail-
able in the online Code Depot.

Example 2-6. Send the Playhead to a Random Frame on the Current Timeline

var randomFrame; // Stores the randomly picked frame number
var numFrames; // Stores the total number of frames on the timeline
numFrames = _totalframes; // Assign _totalframes property to numFrames

// Pick a random frame
randomFrame = Math.floor(Math.random() * numFrames + 1);

gotoAndStop(randomFrame); // Send playhead to chosen random frame

Example 2-7. Calculate the Distance Between Two Movie Clips

var c; // A convenient reference to the circle clip object
var s; // A convenient reference to the square clip object
var deltaX; // The horizontal distance between c and s
var deltaY; // The vertical distance between c and s
var dist; // The total distance between c and s

c = _root.circle; // Get reference to the circle clip
s = _root.square; // Get reference to the square clip
deltaX = c._x - s._x; // Compute the horizontal distance between the clips
deltaY = c._y - s._y; // Compute the vertical distance between the clips

// The distance is the root of (deltaX squared plus deltaY squared).
dist = Math.sqrt((deltaX * deltaX) + (deltaY * deltaY));

// Tidy references are much more readable than the alternative:
dist = Math.sqrt(((_root.circle._x - _root.square._x) * (_root.circle._x –
_root.square._x)) + ((_root.circle._y - _root.square._y) * (_root.circle._y -
_root.square._y)));

Example 2-8. A Fahrenheit/Celsius Temperature Converter

var fahrenheit; // Temperature in Fahrenheit
var celsius; // Temperature in Celsius
var convertDirection; // The system we are converting to.
 // Legal values are "fahrenheit" and "celsius"
fahrenheit = 451; // Set a Fahrenheit temperature
celsius = 20; // Set a Celsius temperature
convertDirection = "celsius"; // Convert to Celsius in this case

,ch02.12597 Page 53 Thursday, April 19, 2001 12:58 PM

54 Chapter 2: Variables

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Onward!
Now that we know all there is to know about storing information in variables, it’s
time we learn something more about the content that variables store: data. Over
the next three chapters, we’ll learn what data is, how it can be manipulated, and
why it’s an essential part of nearly everything we build with ActionScript.

if (convertDirection == "fahrenheit") {
 result = (celsius * 1.8) + 32; // Calculate the Celsius value.
 // Display the result
 trace (celsius + " degrees Celsius is " + result + " degrees Fahrenheit.");
} else if (convertDirection == "celsius") {
 result = (fahrenheit - 32) / 1.8; // Calculate the Fahrenheit value.
 // Display the result
 trace (fahrenheit + " degrees Fahrenheit is " + result + " degrees Celsius.");
} else {
 trace ("Invalid conversion direction.");
}

Example 2-8. A Fahrenheit/Celsius Temperature Converter (continued)

,ch02.12597 Page 54 Thursday, April 19, 2001 12:58 PM

