
148
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 8

8
Loop Statements

In the previous chapter, we learned that a conditional causes a statement block to
be executed once if the value of its test expression is true. A loop, on the other
hand, causes a statement block to be executed repeatedly, for as long as its test
expression remains true.

Loops come in a variety of tasty flavors: while, do-while, for, and for-in. The first
three types have very similar effects, but with varying syntax. The last type of
loop, for-in, is a specialized kind of loop used with objects. We’ll start our explo-
ration of loops with the while statement, the easiest kind of loop to understand.

The while Loop
Structurally, a while statement is constructed much like an if statement: a main
statement encloses a block of substatements that are executed only when a given
condition is true:

while (condition) {
substatements

}

If the condition is true, substatements are executed. But unlike the if state-
ment, when the last substatement is finished, execution begins anew at the begin-
ning of the while statement (that is the interpreter “loops” back to the beginning of
the while statement). The second pass through the while statement works just like
the first: the condition is evaluated, and if it is still true, substatements are exe-
cuted again. This process continues until condition becomes false, at which
point execution continues with any statements that follow the while statement in
the script.

,ch08.15995 Page 148 Monday, April 16, 2001 1:51 PM

The while Loop 149

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Here’s an example of a very simple loop:

var i = 3;
while (i < 5) {
 trace("x is less than 5");
}

The example reliably represents the correct syntax of a while loop but is most
likely in error. To see why, let’s follow along with the interpreter as it executes the
example.

We start with the statement before the while statement, var i = 3, which sets the
variable i to 3. Because the variable i is used in the test expression of the loop,
this step is often called the loop initialization. Next, we begin executing the while
statement by resolving the test expression: i < 5. Because i is 3, and 3 is less than
5, the value of the test expression is true so we execute the trace() statement in
the loop.

With that done, it’s time to restart the loop. Once again, we check the value of the
test expression. The value of the variable i has not changed, so the test expres-
sion is still true and we execute the trace() statement again. At this point, we’re
done executing the loop body, so it’s time to restart the loop. Guess what? The
variable i still has not changed, so the test expression is still true and we must
execute the trace() statement again, and again, and again, forever. Because the
test expression always returns true, there’s no way to exit the loop—we’re
trapped forever in an infinite loop, unable to execute any other statements that
may come after the while statement. In ActionScript, an infinite loop causes an
error, as we’ll see later.

Our loop is infinite because it lacks an update statement that changes the value of
the variable used in the test expression. An update statement typically causes the
test expression to eventually yield false, which terminates the loop. Let’s fix our
infinite loop by adding an update statement:

var i = 3;
while (i < 5) {
 trace("x is less than 5");
 i++;
}

The update statement, i++, comes at the end of the loop body. When the inter-
preter goes through our loop, it executes the trace() statement as before, but it
also executes the statement i++, which adds one to the variable i. With each itera-
tion of the loop, the value of i increases. After the second iteration, i’s value is 5,
so the test expression, i < 5, becomes false. The loop, therefore, safely ends.

,ch08.15995 Page 149 Monday, April 16, 2001 1:51 PM

150 Chapter 8: Loop Statements

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Our loop’s update statement performs a fundamental loop activity: it counts. The
variable i (called a counter) runs through a predictable numeric sequence—per-
fect for methodical tasks such as duplicating movie clips or accessing the ele-
ments of an array. Here we duplicate the square movie clip five times without
using a loop:

// Name each new clip sequentially and place it on its own level
duplicateMovieClip("square", "square1", 1);
duplicateMovieClip("square", "square2", 2);
duplicateMovieClip("square", "square3", 3);
duplicateMovieClip("square", "square4", 4);
duplicateMovieClip("square", "square5", 5);

And here we do it with a loop:

var i = 1;
while (i <= 5) {
 duplicateMovieClip("square", "square" + i, i);
 i++;
}

Imagine the difference if we were duplicating square 100 times!

Loops are marvelously useful for manipulating data, particularly data stored in
arrays. Example 8-1 shows a loop that displays all the elements of an array to the
Output window. Note that the first element is number 0, not number 1.

The result in the Output window is:

people element 0 is John
people element 1 is Joyce
people element 2 is Margaret
people element 3 is Michael

Notice that the variable i is used both in the test expression and as the array
index number, as is typical. Here we use i again as an argument for the charAt()
function:

var city = "Toronto";
trace("The letters in the variable 'city' are ");
var i = 0;
while (i < city.length) {
 trace(city.charAt(i));
 i++;
}

Example 8-1. Displaying an Array with a while Loop

var people = ["John", "Joyce", "Margaret", "Michael"]; // Create an array
var i = 0;
while (i < people.length) {
 trace("people element " + i + " is " + people[i]);
 i++;
}

,ch08.15995 Page 150 Monday, April 16, 2001 1:51 PM

The while Loop 151

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The Output window shows:

The letters in the variable 'city' are:
T
o
r
o
n
t
o

Finally, instead of dissecting data, we use a loop to construct a sentence from a
series of words stored in an array:

var words = ["Toronto", "is", "not", "the", "capital", "of", "Canada"];
var sentence;
var i = 0;
while (i < words.length) {
 sentence += words[i]; // Add the current word to the sentence.

 // If it's not the last word...
 if (i < words.length - 1) {
 sentence += " "; // ...tack on a space.
 } else {
 sentence += "."; // ...otherwise, end with a period.
 }
 i++;
}
trace(sentence); // Displays: "Toronto is not the capital of Canada."

Nearly all loops involve some kind of counter (also sometimes called an iterator or
index variable). Counters let us cycle sequentially through data. This is particu-
larly convenient when we determine the counter’s maximum limit using the
length property of the array or string we want to manipulate, as we did in the
preceding example.

It’s also possible to create a loop whose end point doesn’t depend on a counter.
As long as the test expression of the loop eventually becomes false, the loop will
end. Here, for example, we examine the level stack of the Flash Player to deter-
mine the first vacant level:

var i = 0;
while (typeof eval("_level" + i) == "movieclip") {
 i++;
}
trace("The first vacant level is " + i);

// Now load a movie into the vacant level, knowing it's free
loadMovie("myMovie.swf", i);

,ch08.15995 Page 151 Monday, April 16, 2001 1:51 PM

152 Chapter 8: Loop Statements

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Loop Terminology
In the previous section we encountered several new terms. Let’s look at these
more formally, so that you’ll understand them well when working with loops:

Initialization
The statement or expression that defines one or more variables used in the
test expression of a loop.

Test expression
The condition that must be met in order for the substatements in the loop
body to be executed. Often called a condition or test, or sometimes, control.

Update
The statements that modify the variables used in the test expression before a
subsequent test. A typical update statement increments or decrements the
loop’s counter.

Iteration
One complete execution of the test expression and statements in the loop
body. Sometimes referred to as one loop or one pass.

Nesting or nested loop
A loop that contains another loop so that you can iterate through some sort of
two-dimensional data. For example, you might loop through each row in a
column for all the columns in a table. The outer or top-level loop would
progress through the columns, and the inner loop would progress through the
rows in each column.

Iterator or index variable
A variable whose value increases or decreases with each iteration of a loop,
usually used to count or sequence through some data. Loop iterators are often
called counters. Iterators are conventionally named i, j, and k or sometimes
x, y, and z. In a series of nested loops, i is usually the iterator of the top-level
loop, j is the iterator of the first nested loop, k is the iterator of the second
nested loop, and so on. You can use any variable name you like for clarity.
For example, you can use charNum as the variable name to remind yourself
that it indicates the current character in a string.

Loop body
The block of statements that are executed when a loop’s condition is met. The
body may not be executed at all, or it may be executed thousands of times.

Loop header or loop control
The portion of a loop that contains the loop statement keyword (while, for, do-
while, or for-in) and the loop controls. The loop control varies with the type of

,ch08.15995 Page 152 Monday, April 16, 2001 1:51 PM

The do-while Loop 153

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

loop. In a for loop, the control comprises the initialization, the test, and the
update; in a while loop, the control comprises simply the test expression.

Infinite loop
A loop that repeats forever because its test expression never yields the value
false. Infinite loops cause an error in ActionScript as discussed later under
“Maximum Number of Iterations.”

The do-while Loop
As we saw earlier, a while statement allows the interpreter to execute a block of
code repeatedly while a specified condition remains true. Due to a while loop’s
structure, its body will be skipped entirely if the loop’s condition is not met the
first time it is tested. A do-while statement lets us guarantee that a loop body will
be executed at least once with minimal fuss. The body of a do-while loop always
executes the first time through the loop. The do-while statement’s syntax is some-
what like an inverted while statement:

do {
substatements

} while (condition);

The keyword do begins the loop, followed by the substatements of the body.
On the interpreter’s first pass through the do-while statement, substatements are
executed before condition is ever checked. At the end of the substatements
block, if condition is true, the loop is begun anew and substatements are
executed again. The loop executes repeatedly until condition is false, at which
point the do-while statement ends. Note that a semicolon is required following the
parentheses that contain the condition.

Obviously, do-while is handy when we want to perform a task at least once and
perhaps subsequent times. In Example 8-2 we duplicate a series of twinkling-star
movie clips from a clip called starParent and place them randomly on the Stage.
Our galaxy will always contain at least one star, even if numStars is set to 0.

Example 8-2. Using a do-while Loop

var numStars = 5;
var i = 1;
do {
 // Duplicate the starParent clip
 duplicateMovieClip(starParent, "star" + i, i);

 // Place the duplicated clip randomly on Stage
 _root["star" + i]._x = Math.floor(Math.random() * 551);
 _root["star" + i]._y = Math.floor(Math.random() * 401);
} while (i++ < numStars);

,ch08.15995 Page 153 Monday, April 16, 2001 1:51 PM

154 Chapter 8: Loop Statements

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Did you notice that we sneakily updated the variable i in the test expression?
Remember from Chapter 5, Operators, that the post-increment operator both
returns the value of its operand and also adds one to that operand. The increment
operator is very convenient (and common) when working with loops.

The for Loop
A for loop is essentially synonymous with a while loop but is written with more
compact syntax. Most notably, the loop header can contain both initialization and
update statements in addition to the test expression.

Here’s the syntax of the for loop:

for (initialization; condition; update) {
 substatements
}

The for loop places the key components of a loop tidily in the loop header, sepa-
rated by semicolons. Before the first iteration of a for loop, the initialization
statement is performed (once and only once). It is typically used to set the initial
value of an iterator variable. As with other loops, if condition is true,
substatements are executed. Otherwise, the loop ends. At the end of each loop
iteration, the update statement is executed, before condition is tested again to
see if the loop should continue. Here’s a typical for loop that simply counts from 1
to 10:

for (var i = 1; i <= 10; i++) {
 trace("Now serving number " + i);
}

It’s easier to understand how a for loop works when you see its equivalent con-
structed using the while loop syntax:

var i = 1;
while (i <= 10) {
 trace("Now serving number " + i);
 i++;
}

Once you’re used to the for syntax, you’ll find it saves space and allows for easy
scanning of the loop’s body and controls.

Multiple Iterators in for Loops

If we want to control more than one factor in a loop, we may optionally use more
than one iterator variable. A while loop with multiple iterators may look like this:

var i = 1;
var j = 10;
while (i <= 10) {

,ch08.15995 Page 154 Monday, April 16, 2001 1:51 PM

The for-in Loop 155

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 trace("Going up " + i);
 trace("Going down " + j);
 i++;
 j--;
}

The same effect can be achieved in a for statement using the comma operator:

for (var i = 1, j = 10; i <= 10; i++, j--) {
 trace("Going up " + i);
 trace("Going down " + j);
}

The for-in Loop
A for-in statement is a specialized loop used to list the properties of an object.
New programmers may want to skip this section for now and return to it after
reading Chapter 12, Objects and Classes.

Rather than repeating a series of statements until a given test expression yields the
value false, a for-in loop iterates once for each property in the specified object.
Therefore, for-in statements do not need an explicit update statement because the
number of loop iterations is determined by the number of properties in the object
being inspected. The syntax of a for-in loop looks like this:

for (var thisProp in object) {
substatements; // Statements typically use thisProp in some way

}

The substatements are executed once for each property of object; object is
the name of any valid object; thisProp is any variable name or identifier name.
During each loop iteration, the thisProp variable temporarily holds a string that
is the name of the object property currently being enumerated. That string value
can be used during each iteration to access and manipulate the current property.
The simplest example of a for-in loop is a script that lists the properties of an
object. Here we create an object and then itemize its properties with a for-in loop:

var ball = new Object();
ball.radius = 12;
ball.color = "red";
ball.style = "beach";

for (var prop in ball) {
 trace("ball has the property " + prop);
}

Because prop stores the names of the properties of ball as strings, we can use
prop with the [] operator to retrieve the values of those properties, like this:

for (var prop in ball) {
 trace("ball." + prop + " is " + ball[prop]);
}

,ch08.15995 Page 155 Monday, April 16, 2001 1:51 PM

156 Chapter 8: Loop Statements

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Retrieving property values with a for-in loop also provides a super way to detect
the movie clips present on a timeline. For a demonstration of the for-in loop used
as a movie clip detector, see Example 3-1.

Note that the properties of the object being inspected in a for-in loop are not enu-
merated in any predictable order. Also, for-in statements do not always list every
property of an object. When the object is user-defined, all properties are enumer-
ated, including any inherited properties. But some properties of built-in objects are
skipped by the for-in statement. Methods of built-in objects, for example, are not
enumerated by a for-in loop. If you want to use a for-in statement to manipulate
the properties of a built-in object, first build a test loop to determine the object’s
accessible properties.

Input text fields without a default value are not enumerated by a for-
in loop. Hence, form-validation code that detects empty text fields
will not work properly unless those text fields are explicitly declared
as normal variables in the timeline upon which they reside. See
“Empty Text Fields and the for-in Statement” in Chapter 18.

The for-in statement can also be used to extract elements in an array, in which
case it takes the form:

for (var thisElem in array) {
substatements; // Statements typically use thisElem in some way

}

This example lists the elements of an array:

var myArr = [123, 234, 345, 456];
for (var elem in myArr) {
 trace(myArr[elem]);
}

Stopping a Loop Prematurely
In a simple loop, the test expression is the sole factor that determines when the
loop stops. When the test expression of a simple loop yields false, the loop ter-
minates. However, as loops become more complex, we may need to arbitrarily ter-
minate a running loop regardless of the value of the test expression. To do so, we
use the break and continue statements.

The break Statement

The break statement ends execution of the current loop. It has the modest syntax:

break

,ch08.15995 Page 156 Monday, April 16, 2001 1:51 PM

Stopping a Loop Prematurely 157

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The only requirement is that break must appear within the body of a loop.

The break statement provides a way to halt a process that is no longer worth com-
pleting. For example, we might use a for-in loop to build a form-checking routine
that cycles through the input-text variables on a timeline. If a blank input field is
found, we alert the user that she hasn’t filled in the form properly. We can abort
the process by executing a break statement. Example 8-3 shows the code. Note
that the example assumes the existence of a movie clip called form that contains a
series of declared input variables named input01, input02, and so on.

You can use the break statement to interrupt a loop that would otherwise be infi-
nite. This allows you to perform, say, the statements in the first half of the code
block without necessarily executing the statements following an if (condition) break;
statement. The generic approach is shown in Example 8-4.

The continue Statement

The continue statement is similar to the break statement in that it causes the cur-
rent iteration of a loop to be aborted, but unlike break, it resumes the loop’s exe-
cution with the next natural cycle. The syntax of the continue statement is simply:

continue

In all types of loops, the continue statement interrupts the current iteration of the
loop body, but the resumption of the loop varies slightly depending on the type of
loop statement. In a while loop and a do-while loop, the test expression is

Example 8-3. A Simple Form-Field Validator

for (var prop in form) {
 // If this property is one of our "input" text fields
 if (prop.indexOf("input") != -1) {
 // If the form entry is blank, abort the operation
 if (form[prop] == "") {
 displayMessage = "Please complete the entire form.";
 break;
 }
 // Any substatements following the break command are not reached
 // when the break is executed
 }
}
// Execution resumes here after the loop terminates whether
// due to the break command or the test condition becoming false

Example 8-4. Breaking out of an Infinite Loop

while (true) {
 // Initial statements go here
 if (condition) break;
 // Subsequent statements go here
}

,ch08.15995 Page 157 Monday, April 16, 2001 1:51 PM

158 Chapter 8: Loop Statements

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

checked before the loop resumes. But in a for loop, the loop update is performed
before the test expression is checked. And in a for-in loop, the next iteration
begins with the next property of the object being inspected (if one exists).

Using the continue statement, we can make the execution of the body of a loop
optional under specified circumstances. For example, here we move all the movie
clip instances that aren’t transparent to the left edge of the Stage, and we skip the
loop body for transparent instances:

for (var prop in _root) {
 if (typeof _root[prop] == "movieclip") {
 if (_root[prop]._alpha < 100) {
 continue;
 }
 _root[prop]._x = 0;
 }
}

Maximum Number of Iterations

As noted earlier, loops are not allowed to execute forever in ActionScript. In the
Flash 5 Player loops are limited to 15 seconds. The number of iterations that can
be achieved in that time depends on what’s inside the loop and the computer’s
speed. To be safe, you shouldn’t create loops requiring more than even a few sec-
onds to execute (which is eons in processing terms!). Most loops should take only
milliseconds to finish. If a loop takes longer to complete (for example, because it’s
processing hundreds of strings while initializing a word-scramble game), it’s worth
rewriting the code using a timeline loop, as described in the next section. Time-
line loops allow us to update the progress of a script’s execution on screen and
avoid the potential display of the error message shown in Figure 8-1.

When a loop has run for more than 15 seconds in the Flash 5 Player, an alert box
warns the user that a script in the movie is delaying the movie’s playback. The
user is offered the choice to either wait for the script to finish or to quit the script.

The Flash 4 player is even stricter—it allows only 200,000 iterations—after which
all scripts are disabled without any warning.

Figure 8-1. Bad loop! Down boy!

,ch08.15995 Page 158 Monday, April 16, 2001 1:51 PM

Timeline and Clip Event Loops 159

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Take special heed: the 15-second warning that users see does not
mention that canceling a runaway script will actually cause all scripts
in the movie to stop functioning! If a user selects “Yes” to stop a
loop from continuing, all scripts in the movie are disabled.

Timeline and Clip Event Loops
All the loops we’ve looked at so far cause the interpreter to repeatedly execute
blocks of code. Most of your loops will be of this “ActionScript-statement” type.
But it’s also sometimes desirable to create a timeline loop by looping Flash’s play-
head in the timeline. To do so, attach a series of statements to any frame; on the
next frame, attach a gotoAndPlay() function whose destination is the previous
frame. When the movie plays, the playhead will cycle between the two frames,
causing the code on the first frame to be executed repeatedly.

We can make a simple timeline loop by following these steps:

1. Start a new Flash movie.

2. On frame 1, attach the following statement:

trace("Hi there! Welcome to frame 1");

3. On frame 2, attach the following statements:

trace("This is frame 2");
gotoAndPlay(1);

4. Select Control ➝ Test Movie.

When we test our movie, we see an endless stream of the following text:

Hi there! Welcome to frame 1
This is frame 2
Hi there! Welcome to frame 1
This is frame 2

Timeline loops can do two things ordinary loops cannot:

• They can execute a block of code an infinite number of times without caus-
ing an error.

• They can execute a block of code that requires a Stage update between loop
iterations.

This second feature of timeline loops requires a little more explanation. When any
frame’s script is executed, the movie Stage is not updated visually until the end of
the script. This means that traditional loop statements cannot be used to perform
repetitive visual or audio tasks because the task results aren’t rendered between

,ch08.15995 Page 159 Monday, April 16, 2001 1:51 PM

160 Chapter 8: Loop Statements

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

each loop iteration. Repositioning a movie clip, for example, requires a Stage
update, so we can’t programmatically animate a movie clip with a normal loop
statement.

You might assume that the following code would visually slide the ball movie
clip horizontally across the Stage:

for (var i = 0; i < 50; i++) {
 ball._x += 10;
}

Conceptually, the loop statement has the right approach—it repetitively updates
the position of ball by small amounts, which should give the illusion of move-
ment. However, in practice, the ball doesn’t move each time the _x position of
ball is changed because the Stage isn’t updated. Instead, we’d see the ball sud-
denly jump 500 pixels to the right—10 pixels for each of the 50 loop iterations—
after the script completes.

To allow the Stage to update after each execution of the ball._x += 10; state-
ment, we can use a timeline loop like this:

// CODE ON FRAME 1
ball._x += 10;

// CODE ON FRAME 2
gotoAndPlay(1);

Because Flash updates the Stage between any two frames, the ball will appear to
animate. But the timeline loop completely monopolizes the timeline it’s on. While
it’s running, we can’t play any normal content on that timeline. A better approach
is to put our timeline loop into an empty, two-frame movie clip. We’ll get the ben-
efit of a Stage update between loop iterations without freezing a timeline we may
need for other animation.

Creating an Empty-Clip Timeline Loop

The following steps show how to create an empty-clip timeline loop:

1. Start a new Flash movie.

2. Create a movie clip symbol named ball that contains a circle shape.

3. On the main Stage, rename layer Layer 1 to ball.

4. On the ball layer, place an instance of the ball symbol.

5. Name the instance of the ball clip, ball.

6. Select Insert ➝ New Symbol to create a blank movie clip symbol.

7. Name the clip symbol process.

,ch08.15995 Page 160 Monday, April 16, 2001 1:51 PM

Timeline and Clip Event Loops 161

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

8. On frame 1 of the process clip, attach the following code:

 _root.ball._x += 10;

9. On frame 2 of the process clip, add the following code:

gotoAndPlay(1);

10. Return to the main movie timeline and create a layer called scripts.

11. On the scripts layer, place an instance of the process symbol.

12. Name the instance processMoveBall.

13. Select Control ➝ Test Movie.

The processMoveBall instance will now move ball without interfering with the
playback of the main timeline upon which ball resides.

Note that step 12 isn’t mandatory, but it gives us more control over our loop. By
giving our timeline-loop instance a name, we can stop and start our loop by start-
ing and stopping the playback of the instance, like this:

processMoveBall.play();
processMoveBall.stop();

Note that in this example processMoveBall and ball must both exist on the
main timeline for as long as the loop is supposed to work. If we wanted to make
the code more portable, we could use a relative reference to our ball clip in
process:

_parent.ball._x += 10;

And if we wanted to control our ball from any timeline, we’d use an absolute ref-
erence to ball:

_root.ball._x += 10;

Timeline loops can’t loop on a single frame. That is, if we place a
gotoAndPlay(5) function on frame 5 of a movie, the function will
be ignored. The Player realizes that the playhead is already on frame
5 and simply does nothing.

You’ll find the sample timeline loop and empty-clip loop .fla files in the online
Code Depot.

Flash 5 Clip Event Loops

Timeline loops are effective but not necessarily elegant. In Flash 5, we can use an
event handler on a movie clip to achieve the same results as a timeline loop but

,ch08.15995 Page 161 Monday, April 16, 2001 1:51 PM

162 Chapter 8: Loop Statements

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

with more flexibility (just try to follow along with this example, or see Chapter 10,
Events and Event Handlers, for details on movie clip event handlers).

When placed on a movie clip, an enterFrame event handler causes a block of
code to execute every time a frame passes in a movie. We can use an enterFrame
event handler on a single-frame empty clip to repetitively execute a block of code
while allowing for a Stage update between each repetition (just as a timeline loop
does). Follow these steps to try it out:

1. Follow steps 1 through 7 from the previous section.

2. On the main Stage, create a new layer called scripts.

3. On the scripts layer, place an instance of the process clip.

4. Select the process instance and attach the following code:

onClipEvent(enterFrame) {
 _root.ball._x += 10;
}

5. Select Control ➝ Test Movie.

The ball instance should animate across the Stage.

Clip event loops free us from nesting our code inside a movie clip and don’t
require a two-frame loop, as timeline loops do. All the action of a clip event loop
happens in a single event handler. However, the clip event example we just saw
has a potential drawback: there’s no way to programmatically start or stop the
loop once it’s started. The only way to stop the loop is to physically remove the
process instance from the timeline with a blank keyframe.

To create an event loop that can be arbitrarily started and stopped, we have to
create an empty clip that contains another empty clip that bears an event loop. We
can then dynamically attach and remove the whole package whenever we want to
start or stop our loop. A little convoluted, yes, but the results are quite flexible.
Once again, follow the steps to try it out:

1. Follow steps 1 through 5 under “Creating an Empty-Clip Timeline Loop.”

2. Select Insert ➝ New Symbol twice to create two blank movie clip symbols.

3. Name one clip symbol process and the other eventLoop.

4. In the Library, select the process clip, then select Options ➝ Linkage. The
Symbol Linkage Properties dialog box appears.

5. Select Export This Symbol.

6. In the Identifier field, type processMoveBall and then click OK.

7. On frame 1 of the process clip, drag an instance of eventLoop onto the
Stage.

,ch08.15995 Page 162 Monday, April 16, 2001 1:51 PM

Timeline and Clip Event Loops 163

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

8. Select the eventLoop instance, and attach the following code:

onClipEvent(enterFrame) {
 _parent._parent.ball._x += 10;
}

9. Return to the main movie timeline and attach the following code to frame 1:

attachMovie("processMoveBall", "processMoveBall", 5000);

10. Whenever you want to stop the event loop, issue the following statement:

_root.processMoveBall.removeMovieClip();

11. Select Control ➝ Test Movie.

Once again, the ball instance should animate across the Stage, but this time we
can start and stop it whenever we like by using the attachMovie() and
removeMovieClip() functions shown in steps 9 and 10.

There are examples of regular and controllable clip event loops available from the
online Code Depot.

Keeping event loops portable

Both of the clip event loops we just saw included a line of code that updates the
position of the ball instance on the Stage. For example:

onClipEvent(enterFrame) {
 _parent._parent.ball._x += 10; // Updates ball's position
}

Although this approach works, it’s sloppy. By attaching meaningful code to our
clip event, we’ve decentralized our code base, dispersing logic and behavior
throughout our movie. In order to keep our code accessible during authoring and
better structured for reuse, from within event loops, we should only call func-
tions. So, instead of actually moving the ball clip in our example, we should call
a function that moves the ball clip, like this:

onClipEvent(enterFrame) {
 _parent._parent.moveBall();
}

The user-defined function moveBall() would be defined on the same timeline we
attach the processMoveBall clip to, like this:

function moveBall() {
 ball._x += 10;
}

We’ll talk more about functions and code portability in Chapter 9, Functions.

If our application is simple, we may wish to forego our empty event-loop clip alto-
gether. In some cases, we can quite legitimately attach an event loop directly to

,ch08.15995 Page 163 Monday, April 16, 2001 1:51 PM

164 Chapter 8: Loop Statements

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

the clip being manipulated. In our ball example, we could avoid the need for
separate empty clips by attaching the following code directly to the ball instance:

onClipEvent(enterFrame) {
 _x += 10;
}

This approach is ultraconvenient, but it doesn’t scale very easily, and like our first
example, it suffers from the inability to start and stop the loop.

Frame Rate’s Effect on Timeline
and Clip Event Loops

Because timeline and clip event loops iterate once per frame, their execution fre-
quency is tied to the frame rate of a movie. If we’re moving an object around the
screen with a timeline or an event loop, an increase in frame rate can mean an
increase in the speed of our animation.

When we programmed the movement of the ball clip in our earlier examples, we
implicitly specified the velocity of the ball in relation to the frame rate. Our code
says, “With each frame that passes, move ball ten pixels to the right”:

_ball += 10;

The speed of ball is, hence, dependent on the frame rate. If our movie plays at
12 frames per second, then our ball clip moves 120 pixels per second. If our
movie plays at 30 frames per second, our ball clip moves 300 pixels per second!

When timing scripted animations, it’s tempting to calculate the distance to move
an item in relation to the movie’s frame rate. So, if a movie plays 20 frames per
second, and we want an item to move 100 pixels per second, we’re tempted to set
the velocity of the object to 5 pixels per frame (5 pixels * 20 frames per second =
100 pixels per second). There are two serious flaws in this approach:

• By relying on the frame rate to determine the speed of an item, we make it
painful to change the frame rate. If we change the frame rate, we have to
recalculate our speed and edit our code accordingly.

• The Flash Player does not necessarily play movies back at the frame rate set in
the Flash authoring tool; it often plays them slower. If the computer running
the movie cannot render frames fast enough to keep up with the designated
frame rate, the movie slows down. This slowdown can even vary depending
on the system load; if other programs are running or if Flash is performing
some processor-intensive task, the frame rate may drop for only a short period
and then resume its normal pace.

You can test this out yourself using the time-tracker tool available at:

http://www.moock.org/webdesign/flash/actionscript/fps-speedometer

,ch08.15995 Page 164 Monday, April 16, 2001 1:51 PM

Onward! 165

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

In some cases, an animation that plays back at slightly different speeds could be
deemed acceptable. But when visual accuracy matters or when we’re concerned
with the responsiveness of an action game, it’s much more appropriate to calcu-
late the distance to move an object relative to elapsed time instead of the frame
rate. Example 8-5 shows a quick-and-dirty sample of time-based animation (i.e.,
the ball speed is independent of the frame rate). The new movie would have
three frames and two layers, one layer with the ball instance and the other with
our scripts.

Note that our time-based movement might appear jerky if the frame rate suddenly
changes. We could smooth things out by using an elapsed-time measurement that
averages the time between a series of frames instead of just two.

Onward!
Well, we’ve come pretty far. The end of this chapter marks a milestone—it ends
our examination of the ActionScript statements. That means we have variables,
data, datatypes, expressions, operators, and statements under our belt. These com-
ponents of the language are the foundation of all scripts. If you’ve read and under-
stood everything up to this point, or at least most of it, you can officially claim that
you’re able to “speak” ActionScript.

In the remainder of Part I, ActionScript Fundamentals, we’ll work on making our
conversations more eloquent and our commands more powerful. We’ll consider
the advanced topics of how to make code portable, how to create events that ini-
tiate the execution of our code, how to manage complex data, and how to manip-

Example 8-5. Calculating Move Distances Based on Time, Not Frame Rate

// CODE ON FRAME 1
var distancePerSecond = 50; // Pixels to move per second
var now = getTimer(); // The current time
var then = 0; // The time when last frame was rendered
var elapsed; // Milliseconds between frame renders
var numSeconds; // elapsed expressed in seconds
var moveAmount; // Distance to move each frame

// CODE ON FRAME 2
then = now;
now = getTimer();
elapsed = now - then;
numSeconds = elapsed / 1000;
moveAmount = distancePerSecond * numSeconds;
ball._x += moveAmount;

// CODE ON FRAME 3
gotoAndPlay(2);

,ch08.15995 Page 165 Monday, April 16, 2001 1:51 PM

166 Chapter 8: Loop Statements

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

ulate movie clips programmatically. These techniques will help us build more
advanced applied examples.

,ch08.15995 Page 166 Monday, April 16, 2001 1:51 PM

