é ,ch10.16364 Page 194 Monday, April 16, 2001 1:52 PM

*

10

Events and Event
Handlers

We've learned a lot about composing instructions for the ActionScript interpreter
to execute. By now we'’re pretty comfortable telling the interpreter what we want
it to do, but how do we tell it when to perform those actions? ActionScript code
doesn’t just execute of its own accord—something always provokes its execution.

That “something” is either the synchronous playback of a movie or the occurrence
of a predefined asynchronous event.

Synchronous Code Execution

As a movie plays, the timeline’s playhead travels from frame to frame. Each time
the playhead enters a new frame, the interpreter executes any code attached to
that frame. After the code on a frame has been executed, the screen display is
updated and sounds are played. Then, the playhead proceeds to the next frame.

For example, when we place code directly on frame 1 of a movie, that code exe-
cutes before the content in frame 1 is displayed. If we place another block of code
on a keyframe at frame 5 of the same movie, frames 1 through 4 will be dis-
played, then the code on frame 5 will be executed, then frame 5 will be dis-
played. The code executed on frames 1 and 5 is said to be executed
synchronously because it happens in a linear, predictable fashion.

All code attached to the frames of a movie is executed synchronously. Even if
some frames are played out of order due to a gotoAndPlay() or gotoAndStop()
command, the code on each frame is executed in a predictable sequence, synchro-
nized with the movement of the playhead.

194

%

ﬁ

*@%

é ,ch10.16364 Page 195 Monday, April 16, 2001 1:52 PM

Types of Events 195

Event-Based Asynchronous
Code Execution

Some code does not execute in a predictable sequence. Instead, it executes when
the ActionScript interpreter notices that one of a predetermined set of events has
occurred. Many events involve some action by the user, such as clicking the mouse
or pressing a key. Just as the playhead entering a new frame executes synchro-
nous code attached to the frame, events can cause event-based code to execute.
Event-based code (code that executes in response to an event) is said to be exe-
cuted asynchronously because the triggering of events can occur at arbitrary times.

Synchronous programming requires us to dictate, in advance, the timing of our
code’s execution. Asynchronous programming, on the other hand, gives us the
ability to react dynamically to events as they occur. Asynchronous code execution
is critical to ActionScript and to interactivity itself.

This chapter explores asynchronous (event-based) programming in Flash and cata-
logs the different events supported by ActionScript.

Types of Events

Conceptually, events can be grouped into two categories:

user events
Actions taken by the user (e.g., a mouseclick or a keystroke)

System events
Things that happen as part of the internal playback of a movie (e.g., a movie
clip appearing on stage or a series of variables loading from an external file)

ActionScript does not distinguish syntactically between user events and system
events. An event triggered internally by a movie is no less palpable than a user’s
mouseclick. While we might not normally think of, say, a movie clip’s removal
from the Stage as a noteworthy “event,” being able to react to system events gives
us great control over a movie.

ActionScript events may also be categorized more practically according to the
object to which they pertain. All events happen relative to some object in the Flash
environment. That is, the interpreter doesn’t just say “The user clicked”; it says,
“The user clicked this button” or “The user clicked while this movie clip was on
stage.” And the interpreter doesn’t say, “Data was received”; it says, “7This movie
clip received some data.” We define the code that responds to events on the
objects to which the events relate.

The ActionScript objects that can receive events are:

4~ ~4]e

é ,ch10.16364 Page 196 Monday, April 16, 2001 1:52 PM

196 Chapter 10: Events and Event Handlers

e Movie Clips
e Buttons

e Objects of the XML and XMLSocket classes

As we'll see throughout this chapter, ActionScript actually has two different event
implementations: one for events that relate to movie clips and buttons, and one for
all other kinds of objects.

FEvent Handlers

Not every event triggers the execution of code. Events regularly occur without
affecting a movie. A user may, for example, generate dozens of events by clicking
repeatedly on a button, but those clicks may be ignored. Why? Because, on their
own, events can’t cause code to execute—we must write code to react to events
explicitly. To instruct the interpreter to execute some code in response to an
event, we add a so-called event handler that describes the action to take when the
specified event occurs. Event handlers are so named because they catch, or han-
dle, the events in a movie.

An event handler is akin to a specially named function that is automatically
invoked when a particular event occurs. Creating an event handler is, hence, very
much like creating a function, with a few twists:

e Event handlers have predetermined names such as keyDown. You can’t name
an event handler whatever you like; you have to use the predefined names
shown later in Table 10-1 and Table 10-2.

e Event handlers are not declared with the function statement.

e Event handlers must be attached to buttons, movie clips, or objects, not frames.

Most events were first introduced in Flash 5. If exporting to Flash 4
format, use only the button event handlers (only button events were
supported in Flash 4), and test your work carefully in the Flash 4
Player.

Event Handler Syntax

The names of events (and their corresponding event handlers) are predetermined
by ActionScript. Button event handlers are defined using on (eventName), and
movie clip event handlers are defined using onClipEvent (eventName), where
eventName is the name of the event to be handled.

4~ ~4]e

é ,ch10.16364 Page 197 Monday, April 16, 2001 1:52 PM

Creating Event Handlers 197

Hence, all button event handlers (except keyPress, which also requires a key
parameter) take the form:

on (eventName) {
Statements

}

A single button handler can respond to multiple events, separated by commas. For
example:

on (rollover, rollOut) ({
// Invoke a custom function in response to both the rollOver and rollOut events
playRandomSound() ;

}

All movie clip event handlers take the form:

onClipEvent (eventName) {
statements

}

Unlike button handlers, clip handlers can respond only to a single event.

Creating Event Handlers

To create an event handler, we define the handler and attach it to the appropriate
object. We'll begin with the most common handlers—those attached to buttons
and movie clips.

Attaching Event Handlers to Buttons and Movie Clips

To attach an event handler to a button or a movie clip, we must physically place
the code of the handler function onto the desired button or clip. We may do so
only in the Flash authoring tool, by selecting the object on stage and entering the
appropriate code in the Actions panel, shown in Figure 10-1.

Let’s try making a simple event handler function for both a button and a movie
clip. To create a button event handler, follow these instructions:

1. Start a new Flash movie.
2. Create a button and drag an instance of it onto the main Stage.

3. With the button selected, type the following code in the Actions panel:

on (release) {
trace("You clicked the button");

}
4. Select Control — Test Movie.

5. Click the button. The message, “You clicked the button,” appears in the Out-
put window.

- ad

é ,ch10.16364 Page 198 Monday, April 16, 2001 1:52 PM

198 Chapter 10: Events and Event Handlers

Fi Ohbject Actions @

ﬂj| Obiject &ctions | -
on (release) -
trace("vou clicked the button");

Line 3 of 3, Cal 2

Figure 10-1. Attaching an event handler to a button

When the movie plays and we press and release the button, the release event is
detected by the interpreter and it executes the on (release) event handler. Each
time that we press and release the button, the message, “You clicked the button,”
appears in the Output window.

Now let’s try making a slightly more interesting event handler on a movie clip.
Once again, follow the instructions:

1. Start a new Flash movie.

2. On the main movie Stage, draw a rectangle.
3. Select Insert — Convert to Symbol.
4

. In the Symbol Properties dialog box, name the new symbol rectangle and
select Movie Clip as the Behavior.

N

. Click OK to finish creating the rectangle movie clip.

6. Select the rectangle clip on stage, and then type the following in the Actions
panel:

onClipEvent (keyDown) {
_visible = 0;

}

onClipEvent (keyUp) {
_visible = 1;

}

é ,ch10.16364 Page 199 Monday, April 16, 2001 1:52 PM

Creating Event Handlers 199

7. Select Control — Test Movie.

8. Click the movie to make sure it has keyboard focus, then press and hold any
key. Each time you depress a key, the rectangle movie clip disappears. Each
time you release the depressed key, rectangle reappears.

Notice that we don’t manually issue any handler-invocation statements—the inter-
preter automatically invokes our event handler when the corresponding event
occurs.

Flash doesn’t support attaching and removing handlers via ActionScript while the
movie is playing. Event handlers must be assigned to buttons and movie clips using
the Flash authoring tool. The following imaginary syntax, therefore, is not legal:

myClip.onKeyDown = function () { _visible = 0; };

We'll see how to work around this shortcoming later under “Dynamic Movie Clip
Event Handlers.”

Attaching Event Handlers to Other Objects

In addition to movie clips and buttons, two built-in object classes—XML and
XMLSocket—support event handlers. For these objects, event handlers are not
added to some physical entity in the authoring tool. Rather, they are attached as
methods to object instances.

For the XML and XMlLsocket objects, ActionScript uses predefined properties to
hold the name of the event handlers. For example, the onLoad property holds the
name of the handler to be executed when external XML data has loaded.

To set the onLoad property for an XML object, we use the following code:

myDoc = new XML() ;

myDoc.onLoad = function () { trace("all done loading!"); };
Alternatively, we can define the handler function first, and then assign it to the
onLoad property of our object:

function doneMsg () {

trace("all done loading!");

}
myDoc.onLoad = doneMsg;

This syntax closely resembles that of JavaScript, where functions may be assigned
to event handler properties, as shown in Example 10-1.

Example 10-1. Assigning a JavaScript Event Handler

// Assign a function literal to the onload handler in JavaScript

window.onload = function () { alert("done loading"); };

// Or, alternatively, create and then assign a function to the onload property
function doneMsg () {
alert ("done loading");

4~ ~4]e

é ,ch10.16364 Page 200 Monday, April 16, 2001 1:52 PM

200 Chapter 10: Events and Event Handlers

Example 10-1. Assigning a JavaScript Event Handler (continued)
}

window.onload = doneMsg;

In the future, more ActionScript objects may support assigning event handlers
using object properties, so it’s a good idea to get used to this style now. If you're
not using the XML or XMLSocket objects, you can still practice making handlers in
this way with HTML documents and JavaScript. The beauty of this approach is its
flexibility; any event handler function may be easily reassigned or even removed
during movie playback.

We'll learn more about attaching functions to objects in Chapter 12, Objects and
Classes. Information about the events supported by the XML and XMILSocket
objects may be found in Part III, Language Reference.

The lifespan of event handlers is tied to the life of the objects with
which they are associated. When a clip or button is removed from
the Stage or when an XML or XMLSocket object dies, any event han-
dlers associated with those objects die with them. An object must be
present on stage or exist on the timeline for its handlers to remain
active.

Event Handler Scope

As with any function, the statements in an event handler execute within a pre-
defined scope. Scope dictates where the interpreter looks to resolve the variables,
subfunctions, objects, or properties referenced in an event handler’s body. We’ll
consider event handler scope in relation to movie clip events, button events, and
other object events.

Movie Clip Event Handler Scope

Unlike regular functions, movie clip event handlers do not define a local scope!
When we attach a handler to a clip, the scope of the handler is the clip, not just
the event handler itself. This means that all variables are retrieved from the clip’s
timeline. For example, if we attach an enterFrame event handler to a clip named
navigation and write frace(x); inside the handler, the interpreter looks for the
value of x on navigation’s timeline:

onClipEvent (enterFrame) {

trace(x); // Displays the value of navigation.x

}

4~ ~4]e

é ,ch10.16364 Page 201 Monday, April 16, 2001 1:52 PM

Event Handler Scope 201

The interpreter does not consult a local scope first because there is no local scope
to consult. If we write var y = 10; in our handler, y is defined on navigation’s
timeline, even though the wvar keyword ordinarily declares a local variable when
used in a function.

The easiest way to remember the scope rules of a clip event handler is to treat the
handler’s statements as though they were attached to a frame of the handler’s clip.
For example, suppose we have a clip named ball that has a variable called
xXVelocity in it. To access xVelocity from inside a ball event handler, we sim-
ply refer to it directly, like this:

onClipEvent (mouseDown) {
xVelocity += 10;

}
We don’t have to supply the path to the variable as _root.ball.xVelocity
because the interpreter already assumes we mean the variable xVelocity in
ball. The same is true of properties and methods; instead of using ball._x, we
simply use _x, and instead of using ball.gotoAndStop(5), we simply use gotoAnd-
Stop(5). For example:

onClipEvent (enterFrame) {
_X += xVelocity; // Move the ball
gotoAndPlay (_currentframe - 1); // Do a little loop
}
We can even define a function on ball using a function declaration statement in a
handler, like this:

onClipEvent (load) ({
function hideMe() {
_visibility = 0;
}
}
It's sometimes easy to forget that statements in clip event handlers are scoped to
the clip’s timeline, not the handler function’s local scope and not the clip’s parent
timeline (the timeline upon which the clip resides).

For example, suppose we place our ball clip on the main timeline of a movie,
and the main timeline (not ball’s timeline) has a moveBall() function defined on
it. We may absent-mindedly call moveBall() from an event handler on ball like
this:
onClipEvent (enterFrame) {
moveBall(); // Does nothing! There's no moveBall() function in ball.

// The moveBall() function is defined on _root

}

We have to explicitly refer to the moveBall() function on the main timeline using
_root like this:

4~ ~4]e

é ,ch10.16364 Page 202 Monday, April 16, 2001 1:52 PM

202 Chapter 10: Events and Event Handlers

onClipEvent (enterFrame) {
_root.moveBall(); // Now it works!
}
Occasionally, we may need to refer to the current clip object explicitly from within
an event handler. We can do so using the this keyword, which refers to the cur-
rent movie clip when used in an event handler. Hence, the following references
are synonymous within a clip event handler:

this._x // Same as next line
X

this.gotoAndStop(12); // Same as next line

gotoAndStop (12) ;
Use of this is most frequently required when we're dynamically generating the
name of one of the current clip’s properties (either a variable name or a nested
clip). Here we tell one of the nested clips in the series ball.stripel, ball.
stripe2, ... to start playing, depending on the current frame of the ball clip:

onClipEvent (enterFrame) {

this["stripe" + _currentframe].play();

}
The keyword this is also frequently used with movie clip methods that demand
an explicit reference to a movie clip object upon invocation. Any movie clip
method with the same name as an ActionScript global function must be used with
an explicit clip reference. The this keyword is therefore necessary when invok-
ing the following functions as methods inside an event handler:

duplicateMovieClip()
loadMovie()
loadVariables()
print()
printAsBitmap()
removeMovieClip()
startDrag()
unloadMovie()

For example:

this.duplicateMovieClip("ball2", 1);
this.loadvariables ("vars.txt");
this.startDrag(true) ;
this.unloadMovie() ;

We'll learn all about the dual nature of these functions in “Method versus global
function overlap issues,” in Chapter 13, Movie Clips.

Note that the this keyword allows us to refer to the current clip even when that
clip has no assigned instance name in the authoring tool or when we don’t know

4~ ~4]e

é ,ch10.16364 Page 203 Monday, April 16, 2001 1:52 PM

Event Handler Scope 203

the clip’s name. In fact, using this, we may even pass the current clip as a refer-
ence to a function without ever knowing the current clip’s name. Here’s some
quite legal (and quite elegant) code to demonstrate:

// CODE ON MAIN TIMELINE
// Here is a generic function that moves any clip
function move (clip, x, y) {
clip._x += x;
clip._y += vy;
}

// CODE ON CLIP
// Call the main timeline function and tell it to move the
// current clip by passing a reference with the this keyword
onClipEvent (enterFrame) {

_root.move (this, 10, 15);

In build 30 of the Flash 5 Player, a bug prevented gotoAndStop() and
gotoAndPlay() from working inside a clip handler when used with
string literal labels. Such commands were simply ignored. For exam-
ple, this would not work:

onClipEvent (load) {

gotoAndStop ("intro"); // Won't work in Flash 5 r30

}

To work around the bug, use a self-reflexive clip reference, as in:

onClipEvent (load) {
this.gotoAndStop ("intro") ;
}

Button Event Handler Scope

Button handlers are scoped to the timeline upon which the button resides. For
example, if we place a button on the main timeline and declare the variable speed
in a handler on that button, speed will be scoped to the main timeline (_root):

// CODE FOR BUTTON HANDLER
on (release) ({
var speed = 10; // Defines speed on _root

}

By contrast, if we place a movie clip, ball, on the main timeline and declare the
variable speed in a handler of ball, speed is scoped to ball:

// CODE FOR ball HANDLER
on (load) {
var speed = 10; // Defines speed on ball, not _root

}

4~ ~4]e

é ,ch10.16364 Page 204 Monday, April 16, 2001 1:52 PM

204 Chapter 10: Events and Event Handlers

Inside a button handler, the this keyword refers to the timeline on which the but-
ton resides:
on (release) {
// Make the clip on which this button resides 50% transparent
this._alpha = 50;
// Move the clip on which this button resides 10 pixels to the right
this._x += 10;
}

Other Object Event Handler Scope

Unlike movie clip and button handlers, event handlers attached to instances of
built-in classes such as XML and XMLSocket are scoped exactly like functions. An
XML or XMLSocket object’s event handler has a scope chain that is defined when
the handler function is defined. Furthermore, XML and XMLSocket event handlers
define a local scope. All the rules of function scope described in “Function Scope”
in Chapter 9, Functions, apply directly to event handler functions attached to
objects that are neither buttons nor movie clips.

Button Events

Table 10-1 briefly introduces the various events available for buttons. Using but-
ton events, we can easily create code for navigation, forms, games, and other
interface elements. Let’s explore each button event and learn how a button can be
programmed to react to mouse and keyboard events.

Each of the button events in Table 10-1 is handled by a matching button event
handler of the form on (eventName). For example, the press event is handled
using an event handler beginning with on (press). The exception is the keyPress
event handler which takes the form on (keyPress key) where key is the key to
detect. Button events are sent only to the button with which the mouse is interact-
ing. If multiple buttons overlap, the topmost button receives all events; no other
buttons can respond, even if the topmost button has no handlers defined. In the
following descriptions, the hit area refers to the physical region of the button that
must be under the mouse pointer in order for the button to be activated. (A but-
ton’s hit area is defined graphically when you create the button in the Flash
authoring tool.)

Table 10-1. Button Events

Button Event Name ‘ Button Event Occurs When . . .

press Primary mouse button is depressed while pointer is in the but-
ton’s hit area. Other mouse buttons are not detectable.

release Primary mouse button is depressed and then released while
pointer is in the button’s hit area.

4~ ~4]e

é ,ch10.16364 Page 205 Monday, April 16, 2001 1:52 PM

Button Events 205

Table 10-1. Button Events (continued)

Button Event Name Button Event Occurs When . . .

releaseOutside Primary mouse button is depressed while pointer is in the but-
ton’s hit area and then released while pointer is outside of the
bit area.

rollOver Mouse pointer moves into the button’s hit area without the

mouse button depressed.

rollOut Mouse pointer moves out of the button’s hit area without the
mouse button depressed.

dragOut Primary mouse button is depressed while pointer is in the but-
ton’s hit area, and then, while mouse button is still depressed,
pointer is moved out of the hit area.

dragOver Primary mouse button is depressed while pointer is in the but-
ton’s hit area, and then, while mouse button is still depressed,
pointer is moved out of, then back into, the button’s bit area.

keyPress Specified key is depressed. In most cases, the keyDown clip
event is preferred over the keyPress button event.

press

A mouseclick is technically a two-step process: the mouse button is depressed (press)
and then released (release). A press event occurs when the mouse pointer is in the
hit area of a button and the primary mouse button is depressed. Secondary mouse
buttons are not detectable. Button press events are appropriate for radio buttons or
weapons firing in a game, but use release events to allow the user to change his
mind before releasing the mouse.

release
The release button event occurs when the following sequence is detected:

1. The mouse pointer is in the hit area of a button.

2. The primary mouse button is pressed while the mouse pointer is still in the hit
area of the button (at which point a press event occurs).

3. The primary mouse button is released while the mouse pointer is still in the
bit area of the original button (at which point the release event occurs).

By using the release event instead of the press event, you give users a chance to
move the pointer off of a button even after it has been clicked, thus allowing them
to retract their action.

releaseOutside

The releaseOutside event typically indicates that the user changed his mind by
clicking on a button but moving the pointer off the button before releasing the
mouse button. The event is generated when the following sequence is detected:

4~ ~4]e

é ,ch10.16364 Page 206 Monday, April 16, 2001 1:52 PM

206 Chapter 10: Events and Event Handlers

1. The mouse pointer is in the hit area of a button.
2. The primary mouse button is pressed and held (the press event occurs).

3. The mouse pointer moves out of the button’s hit area (the dragOut event
occurs).

4. The primary mouse button is released while not in the hit area of the original
button.

You will rarely bother detecting releaseOutside events, as they usually indicate that
the user intended not to perform any action.

rollOver

The rollOver event occurs when the mouse pointer moves into the hit area of a
button with no mouse buttons depressed. The rollOver event is rarely used in
ActionScript because visual button changes are created directly in the authoring
tool, not with scripting. You should use the provided up, over, and down frames in
the authoring tool to create highlight states for buttons.

The rollOver event in Flash 5 provides a handy means of retrieving a text field
selection. For more details, see “Selection Object” in Part III.

rollOut

The rollOut event is rollOver's counterpart; it occurs when the mouse pointer is
moved out of the hit area of a button with no mouse buttons depressed. As with
rollOver, rollOut is rarely used because button highlight states are created directly
in the authoring tool, so manual image swapping is not required in ActionScript.

dragOut

The dragOut event is similar to ro/lOut, except that it is generated if the mouse
button is down when the pointer leaves a button’s hit area. The dragOut event is
followed by either the releaseOutside event (if the user releases the mouse but-
ton) or the dragOuver event (if the user moves the pointer back into the button’s
hit area without having released the mouse button).

dragQOver

The dragOver event is a seldom-seen woodland creature. It is conjured up when
the following sequence is performed:

1. The mouse pointer moves into the bit area of a button (7ollOver event occurs).

2. The primary mouse button is pressed and held (press event occurs).

4~ ~4]e

é ,ch10.16364 Page 207 Monday, April 16, 2001 1:52 PM

Button Events 207

3. The mouse pointer moves out of the button’s hit area (dragOut event occurs).

4. The mouse pointer moves back into the button’s hit area (dragOver event
occurs).

Thus, the dragOver event indicates that the user has moved the mouse pointer out
of and back into the bit area, all the while holding the mouse button down. Note
that dragover, instead of the rollOver event, is generated if the mouse button is still
down when the pointer reenters the button’s bit area.

keyPress

The keyPress event is unrelated to mouse events and is instead triggered by the
pressing of a specified key. We cover it here because it uses the on (eventName)
syntax of other ActionScript button event handlers. This event handler requires us
to specify the key that triggers the event:

on (keyPress key) ({
statements

}

where key is a string representing the key associated with the event. The string
may be either the character on the key (such as “s” or “S”), or a keyword repre-
senting the key in the format "<Keyword>". Only one key may be specified with
each handler. To capture multiple keys using keyPress, we must create multiple
keyPress event handlers. For example:

// Detects the "a" key
on (keyPress "a") {
trace("The 'a' key was pressed");

}

// Detects the Enter key
on (keyPress "<Enter>") {
trace("The Enter key was pressed") ;

}

// Detects the Down Arrow key
on (keyPress "<Down>") {
trace("The Down Arrow key was pressed");

}

The legal values of Keyword are as follows (note that the function keys F1 . . . F12
are not supported by keyPress, but are detectable using the Key object):

<Backspace>
<Delete>
<Down>
<End>
<Enter>
<Home>

é ,ch10.16364 Page 208 Monday, April 16, 2001 1:52 PM

208 Chapter 10: Events and Event Handlers

<Insert>

<Left>

<PgDn>

<PgUp>

<Right>

<Space>

<Tab>

<Up>
In Flash 4, keyPress was the only means we had of interacting with the keyboard.
In Flash 5 and later, the Key object, in combination with the movie clip events
keyDown and keyUp (discussed later), offer much greater control over keyboard
interaction. The keyPress event detects the pressing of a single key at a time,
whereas the Key object can detect the simultaneous pressing of multiple keys.

Movie Clip Events Overview

Movie clip events are generated by a wide variety of occurrences in the Flash
Player, from mouseclicks to the downloading of data. Clip events can be broken
into two categories: user-input events and movie-playback events. User-input
events are related to the mouse and keyboard, while movie-playback events are
related to the rendering of frames in the Flash Player, the birth and death of movie
clips, and the loading of data.

Note that user-input clip events partially overlap the functionality of the button
events described earlier. For example, a clip’s mouseDown event handler can
detect a mouse press just as a button’s press event handler can. Movie clip events,
however, are not tied to any kind of hit area like button events are and do not
affect the look of the mouse pointer.

Let’s spend some quality time with the ActionScript movie clip events, summa-
rized in Table 10-2. We'll look at the movie-playback events first (enterFrame,
load, uwnload, and data) and then see how the user-input events work
(mouseDown, mouseUp, mouseMove, keyDown, keyUp). Each of the clip events is
handled by a matching clip event handler of the form onClipEvent (eventName).
For example, the enterFrame event is handled using an event handler beginning
with onClipEvent (enterFrame). With the exception of load, unload, and data,
movie clip events are sent to all movie clips on stage even if, say, the user clicks
the mouse while on top of a different movie clip (or no movie clip).

Table 10-2. Movie Clip Events

Clip Event Name Clip Event Occurs When . . .

enterFrame Playhead enters a frame (before frame is rendered in the Flash
Player)

load The clip first appears on the Stage

unload The clip is removed from the Stage

4~ ~4]e

é ,ch10.16364 Page 209 Monday, April 16, 2001 1:52 PM

Movie-Playback Movie Clip Events 209

Table 10-2. Movie Clip Events (continued)

Clip Event Name Clip Event Occurs When . . .

data Variables finish loading into a clip or a portion of a loaded
movie loads into a clip

mouseDown Primary mouse button is depressed while the clip is on stage
(secondary mouse buttons are not detectable)

mouseUp Primary mouse button is released while the clip is on stage

mouseMove Mouse pointer moves (even a teensy bit) while the clip is on
Stage, even if the mouse is not over the clip

keyDown A key is pressed down while the clip is on Stage

keyUp A depressed key is released while the clip is on Stage

Movie-Playback Movie Clip Events

The following events are generated without user intervention as Flash loads and
plays movies.

enterFrame

If you’ve ever resorted to empty, looping movie clips to trigger scripts, enterFrame
offers a welcome respite. The enterFrame event occurs once for every frame that
passes in a movie. For example, if we place the following code on a movie clip,
that clip will grow incrementally by 10 pixels per frame:
onClipEvent (enterFrame) {
_height += 10;
_width += 10;
}
(Notice that, as we learned earlier, the _height and _width properties are
resolved within the scope of the clip to which the enterFrame event handler is
attached, so no clip instance name is required before _height and _width.)

The enterFrame event is generated before each frame is rendered
even if the playhead of the clip with the enterFrame handler is
stopped. The enterFrame event, hence, is always being triggered.

When displayed in the Flash Player, all Flash movies are constantly running, even
when nothing is moving on screen or when a movie’s playhead is stopped on a
frame. An individual movie clip’s enterFrame handler will, hence, be executed
repeatedly for as long as that clip is on stage, regardless of whether the clip is
playing or stopped. If a clip’s playhead is moved by a gotoAndStop() function call,
the clip’s enterFrame event handler is still triggered with each passing frame. And

4~ ~4]e

é ,ch10.16364 Page 210 Monday, April 16, 2001 1:52 PM

210 Chapter 10: Events and Event Handlers

if every playhead of an entire movie has been halted with a stop() function, all
enterFrame event handlers on all clips will still execute.

The enterFrame event is normally used to update the state of a movie clip repeat-
edly over time. But an enterFrame event handler need not apply directly to the
clip that bears it—enterFrame can be used with a single-frame, empty clip to exe-
cute code repeatedly. This technique, called a clip event loop (or more loosely, a
process) is demonstrated in “Timeline and Clip Event Loops” in Chapter 8, Loop
Statements.

Note that the code in an enterFrame event handler is executed before any code
that appears on the timeline of the clip containing the handler.

With a little ambition, we can use enterFrame to gain extremely powerful control
over a clip. Example 10-7, shown later, extends our earlier clip-enlarging code to
make a movie clip oscillate in size.

load

The load event occurs when a movie clip is born—that is, when a movie clip
appears on stage for the first time. A movie clip “appears on stage” in one of the
following ways:

e The playhead moves onto a keyframe that contains a new instantiation of the
clip, placed in the authoring tool.

e The clip is duplicated from another clip via the duplicateMovieClip() function.
e The clip is programmatically added to the Stage via the attachMovie() function.
e An external .swffile is loaded into the clip with the loadMovie() function.

e The contents of a clip are unloaded with the unloadMovie() function. (A load
event is triggered because an empty placeholder clip is loaded into the clip
when its contents are expelled.)

The body of a load event handler is executed after any code on the timeline
where the movie clip first appears.

A Joad event handler is often used to initialize variables in a clip or to perform
some setup task (like sizing or positioning a dynamically generated clip). A load
handler can also provide a nice way to prevent a movie clip from automatically
playing:

onClipEvent (load) {

stop() ;

}
The load event handler might also be used to trigger some function that relies on
the existence of a particular clip in order to execute properly.

4~ ~4]e

é ,ch10.16364 Page 211 Monday, April 16, 2001 1:52 PM

Movie-Playback Movie Clip Events 211

The [load event is particularly interesting when combined with the
duplicateMovieClip() function, which creates new movie clips. In Example 10-2 we
generate an entire field of star clips using a single Joad event handler in a cascad-
ing chain. The load handler is copied to each duplicated star, causing it, in turn,
to duplicate itself. The process stops when the 100th clip is duplicated. The fla file
for Example 10-2 is available from the online Code Depot.

Example 10-2. Generating a Star Field with a load Event

onClipEvent (load) ({
// Place the current clip at a random position
_x = Math.floor (Math.random() * 550);
_y = Math.floor (Math.random() * 400);

// Reset clip scale so we don't inherit previous clip's scale
_xscale = 100;
_yscale = 100;

// Randomly size current clip between 50 and 150 percent
randScale = Math.floor (Math.random() * 100) - 50;
_xscale += randScale;

_yscale += randScale;

// If we're not at the 100th star, make another one
if (_name != "starl00") {
nextStarNumber = number (_name.substring(4, _name.length)) + 1;
this.duplicateMovieClip("star" + nextStarNumber, nextStarNumber) ;
}

unload

The unload event is the opposite of the load event: it occurs when a movie clip
expires—that is, immediately affer the last frame in which the clip is present on
stage (but before the first frame in which the clip is absent).

The following incidents provoke a movie clip’s unload event:

e The playhead reaches the end of the span of frames upon which the clip
resides.

e The clip is removed via the removeMovieClip() function (which kills clips gen-
erated by the attachMovie() and duplicateMovieClip() functions).

e A previously loaded external .swf file is removed from the clip via the
unloadMovie() function.

e The clip has an external .swf loaded into it.
This last unload event trigger may seem a little odd but is actually a natural result

of the way movies are loaded into Flash. Anytime a .swf is loaded into a movie
clip, the previous contents of that clip are displaced, causing an wunload event.

4~ ~4]e

é ,ch10.16364 Page 212 Monday, April 16, 2001 1:52 PM

212 Chapter 10: Events and Event Handlers

Here’s an example that illustrates the behavior of the load and unload events in
connection with loadMovie():

1. In the Flash authoring tool, we place an empty movie clip on stage at frame 1
of a movie’s main timeline. We name our clip emptyClip.

2. At frame 5 of the main timeline, we load the movie fest.swf into emptyClip
using the following code: emptyClip.loadMovie ("test.swt");

3. We play the movie using Control - Play movie.
The results are:

1. Frame 1: The emptyClip clip appears, causing a load event.
2. Frame 5: The loadMovie() function is executed in two stages:

a. The placeholder content of emptyClip is removed to make room for the
incoming fest.swf, causing an unload event.

b. The movie test.swf loads, causing a load event.

The wunload event is typically used to initiate housecleaning code—code that
cleans up the Stage or resets the program environment in some way. An unload
handler also provides a means for performing some action (such as playing
another movie) after a movie clip ends.

data

The data event occurs when external data is loaded into a movie clip. The data
event can be triggered by two quite different circumstances, according to the kind
of data being loaded. We’ll consider those circumstances separately.

Using a data event handler with loadVariables()

When we request a series of variables from a server using loadVariables(), we
must wait for them to load completely before using their information. (See Part III.)

When a movie clip receives the end of a batch of loaded variables, the data event
is triggered, telling us it’s safe to execute code that relies on the variables.

For example, suppose we have a guest book movie in which visitors enter com-
ments and we store those comments on a server. When a user attempts to view a
comment, we request it from the server using loadVariables(). But before we can
display the comment, we must pause at a loading screen until we know that the
requested data is available. A data event handler tells us when our data has
loaded, at which point we can safely display the comment to the user.

Example 10-3 is a simplified excerpt of some code from a guest book showing a
data event handler used with loadVariables(). In the example, a button loads two

4~ ~4]e

é ,ch10.16364 Page 213 Monday, April 16, 2001 1:52 PM

Movie-Playback Movie Clip Events 213

URL-encoded variables from a text file into a movie clip. The movie clip bears a
data event handler that executes when the variables have loaded. From inside that
handler, we display the values of the variables. We know the variables are safe to
display because the code in the handler isn’t executed until triggered by the data
event (i.e., after the data is received).

Example 10-3. Waiting for a data Event

// CONTENT OF OUR guestbook.txt FILE
name=judith&message=hello

// BUTTON INSIDE OUR CLIP
on (release) {

this.loadVariables ("guestbook.txt") ;
}

// HANDLER ON OUR CLIP
onClipEvent (data) {
trace (name) ;
trace (message) ;
}

We'll use the data event again when we build a Flash form in Chapter 17, Flash
Forms.

Using a data event bandler with loadMovie()

The second use of the data event relates to the loading of external .swf files into
movie clips with the loadMovie() function. When a .swf file is loaded into a host
clip, by default the file begins playing immediately, even if only partially loaded.
This is not always desirable—sometimes we want to guarantee that all or a certain
percentage of a .swf has loaded before playback begins. We can make that guar-
antee with a data event handler and some preloading code.

The data event occurs each time a host movie clip receives a portion of an exter-
nal .swf file. The definition of what constitutes a “portion” is more complex than
you might expect. In order for a data event to be triggered, at least one complete
new frame of the external .swf file must have loaded since either: (a) the last data
event fired or (b) the .swffile started loading. (More than one frame of the .swf file
may actually have loaded in that amount of time, but one frame is the minimum
number required to prompt a data event.)

The execution of data event handlers is tied to the rendering of frames in the
Player. With every frame rendered, the interpreter checks to see if part of an exter-
nal .swf file has been loaded into a clip that has a data event handler. If part of an
external .swyf file has been loaded into such a clip, and the loaded portion contains
at least one new frame, then the data event handler is executed. This process hap-
pens once—and only once—per frame rendered (even if the playhead is stopped).

4~ ~4]e

é ,ch10.16364 Page 214 Monday, April 16, 2001 1:52 PM

214 Chapter 10: Events and Event Handlers

Note that because the data event happens on a per-frame basis, movies with
higher frame rates tend to have smoother-looking preloaders because they receive
more frequent updates on the status of loading .swf files.

The exact number of data events triggered during a loadMovie() operation
depends on the distribution of content in the .swf file being loaded and the speed
of the connection. A single-frame .swf file, no matter how large, will trigger only
one data event. On the other hand, a .swf file with 100 frames may trigger up to
100 separate data events, depending on the movie’s frame rate, the byte size of
each frame and the speed of the network connection. If the frames are large and
the connection is slow, more data events will be triggered (up to a maximum of
one per frame). If the frames are small and the connection is fast, fewer data
events will be triggered (the entire 100 frames may be transferred between the
rendering of two frames in the Player, prompting only one data event).

So how do we use a data event handler to build a preloader? Well, whenever a
data event occurs due to a loadMovie() function call, we know that an external .swf
file download is in progress. Therefore, from inside a data event handler, we can
check whether enough of the file has downloaded before allowing it to play. We
do so using the getBytesLoaded() and getBytesTotal() functions as shown in
Example 10-4. (The _framesloaded and _totalframes movie clip properties
may also be used.)

Example 10-4 also provides feedback while the movie is loading. Note that the .swf
file being loaded should have a stop() function call on its first frame to prevent it
from automatically playing before it is completely downloaded. A variation of
Example 10-4 is available from the online Code Depot.

Example 10-4. A data Event Preloader

onClipEvent (data) ({
trace("data received"); // The show's about to start!

// Turn on data-transfer light
_root.transferIndicator.gotoAndStop ("on") ;

// If we're done loading, turn off transfer light, and let the movie play

if (getBytesTotal() > 0 && getBytesLoaded() == getBytesTotal()) {
_root.transferIndicator.gotoAndStop ("off") ;
play();

}

// Display some loading details in text field variables on the _root
_root.bytesLoaded = getBytesLoaded() ;

_root.bytesTotal = getBytesTotal();

_root.clipURL = _url.substring(_url.lastIndexOf("/") + 1, _url.length);

4~ ~4]e

é ,ch10.16364 Page 215 Monday, April 16, 2001 1:52 PM

The User-Input Movie Clip Events 215

The User-Input Movie Clip Events

The remainder of the movie clip events relate to user interaction. When any of the
user-input clip events occurs, all clips on stage (no matter how deeply nested in
other clips) receive the event. Hence, multiple clips may react to a single mouse-
click, mouse movement, or keystroke.

To execute code based on the proximity of the mouse to a particular clip, an
event handler should check the location of the mouse pointer relative to the clip.
The built-in hitTest() function provides an easy way to check whether a mouse-
click occurred within a certain region, as shown later in Example 10-9.

mouseDown

Like the press button event, the mouseDown clip event detects the downstroke of
a mouseclick. The mouseDown event occurs each time the primary mouse button
is depressed while the mouse pointer is over any part of the Stage.

Unlike the button press event, mouseDown is not tied to the hit area of a button.
In combination with the mouseUp and mouseMove events and the Mouse.hide()
method, the mouseDown event can be used to implement a custom mouse
pointer, as we'll see later in Example 10-8.

mouseUp

The mouseUp event is the counterpart to mouseDown. It occurs each time the pri-
mary mouse button is released while the mouse pointer is over any part of the
Stage. As with mouseDown, a clip with a mouseUp handler must be present on
stage at the time the mouse button is released in order for the event to have any
consequence. The mouseUp, mouseDown, and mouseMove events can be used to
create rich levels of mouse interactivity without affecting the appearance of the
mouse pointer (as a button does).

mouseMove

The mouseMove event lets us detect changes in the mouse pointer’s position.
Whenever the mouse is in motion, mouseMove events are issued repeatedly, as fast
as the processor can generate new events. A clip with a mouseMove handler must
be present on stage at the time the mouse is moving in order for the mouseMove
event to have any effect.

The mouseMove event is useful for code that wakes up idle applications, displays
mouse trails, and creates custom pointers, as we’ll see later in Example 10-8.

4~ ~4]e

é ,ch10.16364 Page 216 Monday, April 16, 2001 1:52 PM

216 Chapter 10: Events and Event Handlers

keyDown

The keyDown and keyUp events are the keyboard analogs of mouseDown and
mouseUp. Together, they provide fundamental tools for coding keyboard-based
interactivity. The keyDown event occurs whenever a key on the keyboard is
depressed. When a key is held down, keyDown may occur repeatedly, depending
on the operating system and keyboard setup. Unlike the keyPress button event,
keyDownclip events occur when any key—not just a specific key—is pressed.

To trap (i.e., detect or catch) a keyDown event, we must ensure that a movie clip
with a keyDown event handler is present on stage at the time that a key is pressed.
The following code does the trick:

onClipEvent (keyDown) {

trace("Some key was pressed");

}
You'll notice that our keyDown handler does not tell us which key was pressed. If
we're waiting for the user to press any key to continue, we might not care which
key it was. But usually, we want to tie some action to a specific key. For exam-
ple, we might want different keys to turn a spaceship in different directions.

To find out which keys triggered the keyDown event, we consult the built-in Key
object, which describes the keyboard’s state. The type of information we require
depends on the interactivity we're trying to produce. Games, for example, require
instant, continuous feedback from potentially simultaneous keypresses. Naviga-
tional interfaces, in contrast, may require only the detection of a single keypress
(e.g., the spacebar in a slide show presentation).

The Key object can tell us which key was last pressed and whether a particular
key is currently being pressed. To determine the state of the keyboard, we use
one of the four Key object methods:

Key.getCode () // Base-10 keycode value of last key pressed
Key.getAscii () // Base-10 ASCII value of last key pressed
Key . isDown (keycode) // Returns true if specified key is currently pressed

Key.isToggled(keycode) // Determines whether Caps Lock or Num Lock is toggled on

Example 10-5 shows a keyDown handler that tells us the ASCII value of the last
key pressed.
Example 10-5. Checking the Last Key Pressed

onClipEvent (keyDown) {
// Retrieve the ASCII value of the last key pressed and convert it to a character
lastKeyPressed = String.fromCharCode (Key.getAscii());
trace("You pressed the '" + lastKeyPressed + "' key.");

}

4~ ~4]e

é ,ch10.16364 Page 217 Monday, April 16, 2001 1:52 PM

The User-Input Movie Clip Events 217

Example 10-6 shows a sample keyDown handler that checks whether the up arrow
was the last key pressed.
Example 10-6. Detecting an Up Arrow Keypress
onClipEvent (keyDown) {

// Check to see if the up arrow was the last key pressed.

// The up arrow is represented by the Key.UP property.

if (Key.getCode() == Key.UP) {

trace("The up arrow was the last key depressed");

}
}

There are several ways to query the state of the keyboard, and you must choose
the one that best suits your application. For example, the Key.getAscii() method
returns the ASCII value of the character associated with the last-pressed key, which
may differ across keyboards in different languages (though, in English, the place-
ment of the letters and numbers on a keyboard is standardized). On the other
hand, the Key.getCode() method returns a value tied to a physical key on the key-
board, not a specific letter. Key.getCode() may be more useful for an international
or cross-platform audience if you want to, say, use four adjacent keys for naviga-
tion regardless of the characters they represent. There’s more information on this
topic under “Key Object” in Part III.

You can download sample keyDown and keyUp .fla files from the online Code
Depot.

Event handlers that react to keystrokes are executed only if the
Flash Player has mouse focus. Users must click the Stage of a movie
before the movie’s keystroke handlers will become active. Con-
sider forcing users to click a button before entering any keyboard-
controlled section of a movie.

Handling special keys

To disable the Flash standalone Player menu commands (Open, Close, Fullscreen,
etc.), add the following line of code to the beginning of your movie:

fscommand ("trapallkeys", "true");

That command also prevents the Escape key from exiting fullscreen mode in a
Projector. To capture Escape in a Projector, use:
onClipEvent (keyDown) {
if (Key.getCode() == Key.ESCAPE) {

// Respond to Escape keypress
}

4~ ~4]e

é ,ch10.16364 Page 218 Monday, April 16, 2001 1:52 PM

218 Chapter 10: Events and Event Handlers

Note that the Escape key cannot be trapped in all browsers. Furthermore, there is
no way to disable the Alt key or the Windows Alt-Tab or Ctrl-Alt-Delete key
sequences.

To capture Tab keypresses, create a button with the following handler:

on (keyPress "<Tab>") {
// Respond to Tab key
}

In the standalone Player, the Tab key may also be captured with a clip event han-
dler such as:

onClipEvent (keyDown) {
if (Key.getCode() == Key.TAB) {
// Respond to Tab keypress
}
}

In some browsers, the Tab key can be detected only with a button keyPress event,
and it may even be necessary to combine a keyPress button event with a keyUp
clip event. The following code first traps the Tab key with keyPress, and then
reacts to it in a keyUp handler. Note that we don’t use keyDown because Key.
getCode() for the Tab key is set only on the key upstroke in Internet Explorer:

// CODE ON BUTTON ON MAIN TIMELINE
on (keyPress "<Tab>") {

// Set a dummy variable here

foo = 0;

}

// CODE ON MOVIE CLIP ON MAIN TIMELINE
onClipEvent (keyUp) {
if (Key.getCode() == Key.TAB) {
// Now place the cursor in myTextField on _level0
Selection.setFocus ("_level0.myTextField") ;
}
}

We typically trap the Tab key in order to move the insertion point to a particular

text field in a form. See the example under “Selection.setFocus() Method ” in Part
I for details.

To capture a shortcut-key-style combination such as Ctrl-F, use an enterFrame
handler and the Key.isDown() method:

onClipEvent (enterFrame) {
if (Key.isDown (Key.CONTROL) && Key.isDown(70)) {
// Respond to Ctrl-F
}

é ,ch10.16364 Page 219 Monday, April 16, 2001 1:52 PM

The User-Input Movie Clip Events 219

To capture the Enter (or Return) key, use either a button handler, such as:

on (keyPress "<Enter>") {
// Respond to Enter key press (e.g., submit a form)
}

or a keyDown handler, such as:

onClipEvent (keyDown) {
if (Key.getCode() == Key.ENTER) {
// Respond to Enter key press (e.g., submit a form)
}
}
See “Key Object” and “Key.getCode() Method” in Part IIT for more information on
capturing other special keys such as the function keys (F1, F2, etc.) or keys on the
numeric keypad.

keyUp

The keylUp event is triggered when a depressed key is released. The keyUp event is
an essential component of game programming because it lets us turn off some-
thing that was turned on by an earlier keyDown event—the classic example being
a spaceship’s thrust. As a further example, in the Flash authoring tool, holding
down the spacebar temporarily switches to the Hand tool, and releasing the space-
bar restores the previous tool. This approach can be used to show and hide things
in your application, such as temporary menus.

As with keyDown, in order to obtain useful information from a keyUp event, we
normally use it with the Key object:
onClipEvent (keyUp) {
if (!Key.isDown(Key.LEFT)) {
trace("The left arrow is not depressed");
}
}
Because the Key.isDown() method lets us check the status of any key anytime, we
may use an enterFrame event loop to check whether a certain key is depressed.
However, polling the keyboard (i.e., checking the status of a key repeatedly) is
less efficient than waiting until we know that a key has been pressed as indicated
by a keyDown event triggering our event handler.

The approach we end up taking ultimately depends on the type of system we’re
building. In a system that’s constantly in motion, such as a game, polling may be
appropriate because we're cycling through a main game loop with every frame
anyway. So, we can just check the Key object while we’re doing the rest of our
loop. For example:

// CODE ON EMPTY CLIP
// This keeps the game process running

4~ ~4]e

é ,ch10.16364 Page 220 Monday, April 16, 2001 1:52 PM

220 Chapter 10: Events and Event Handlers

onClipEvent (enterFrame) {
_root.mainLoop() ;

}

// CORE GAME CODE ON MAIN TIMELINE
// This is executed once per frame
function mainLoop () {
if (Key.isDown (Key.LEFT)) {
trace("The left arrow is depressed");
// Rotate the spaceship to the left
}

// Check the other keys, then carry on with our game cycle
}

In static-interface environments, there’s no need to use an enterFrame loop to
check for keypresses unless you are trying to detect specific keyboard combina-
tions (i.e., multiple keys being pressed simultaneously). You should ordinarily use
keyDown and keyUp event handlers, which are triggered precisely once for each
keypress and key release. When using keyUp and keyDown event handlers, you
need not concern yourself with whether the key is still being pressed at any given
instant. This allows you to detect keypresses accurately even if the user releases
the key between frames, and it also prevents you from checking the same key
twice if it was pressed only once. In any case, you will ordinarily use the Key.
getCode() and Key.getASCII() methods to check for the last key pressed within a
keyDown or keyUp event handler.

Order of Execution

Some movies have code dispersed across multiple timelines and multiple clip
event handlers. It's not uncommon, therefore, for a single frame to require the
execution of many separate blocks of code—some in event handlers, some on
frames in clip timelines, and some on the main timelines of documents in the
Player. In these situations, the order in which the various bits of code execute can
become quite complex and can greatly affect a program’s behavior. We can pre-
vent surprises and guarantee that our code behaves as desired by becoming famil-
iar with the order in which event handlers execute relative to the various timelines
in a movie.

Asynchronous event handlers execute independently of the code on a movie’s
timelines. Button event handlers, for example, are executed immediately when the
event that they handle occurs, as are handlers for the mouseDown, mouseUp,
mouseMove, keyDown, and keyUp events.

Handlers for the movie-playback events, however, execute in order, according to
the progression of the movie, as shown in Table 10-3.

4~ ~4]e

,ch10.16364 Page 221 Monday, April 16, 2001 1:52 PM

Order of Execution 221

Table 10-3. Movie Clip Event Handler Order of Execution

Event Handler Execution Timing

load Executes in the first frame in which the clip is present on stage after
parent-timeline code executes, but before clip-internal code exe-
cutes, and before the frame is rendered.

unload Executes in the first frame in which the clip is not present on stage,
before parent-timeline code executes.

enterFrame Executes in the second and all subsequent frames in which the clip is
present on stage. It is executed before parent-timeline code executes
and before clip-internal code executes.

data Executes in any frame in which data is received by the clip. If trig-
gered, it executes before clip-internal code executes and before
enterFrame code executes.

It’s easier to see the effect of the rules in Table 10-3 with a practical example. Sup-
pose we have a single-layer movie with four keyframes in the main timeline. We
attach some code to each keyframe. Then, we create a second layer where we
place a movie clip at frame 1, spanning to frame 3, but not present on frame 4.
We add load, enterFrame, and unload handlers to our clip. Finally, inside the clip,
we create three keyframes, each of which also contains a block of code.
Figure 10-2 shows what the movie looks like.

15 20 25 20 35 40 45

B clip layer
[Layer1

& &

ﬂj| Object Actions |

onC 1 TpEvent (load) |
tracel"load handler executed');
1

onC1ipEvent (enterfFrame) |
trace("enterFrame handler executed");

onC1ipEvent Cunload) {
trace("unload handler executed");

—
==} ==}

4 | 1+

Line 11 of 11, Cal 2

Figure 10-2. A code execution order test movie

When we play our movie, the execution order is as follows:

é ,ch10.16364 Page 222 Monday, April 16, 2001 1:52 PM

222 Chapter 10: Events and Event Handlers

FRAME 1
1) Main timeline code executed
2) load handler executed
3) Clip-internal code, frame 1, executed

FRAME 2
1) enterFrame handler executed
2) Clip-internal code, frame 2, executed
3) Main timeline code executed

FRAME 3
1) enterFrame handler executed
2) Clip-internal code, frame 3, executed
3) Main timeline code executed

FRAME 4
1) unload handler executed
2) Main timeline code executed

The execution order of the code in our sample movie demonstrates some impor-
tant rules of thumb to remember when coding with event handlers:

e Code in a load handler is executed before internal clip code, so a load han-
dler may be used to initialize variables that are used immediately on frame 1
of its associated clip.

e Before a movie clip is instantiated on a frame, the code of that frame is exe-
cuted. Therefore, user-defined variables and functions in a movie clip are not
available to any code on its parent timeline until the frame after the clip first
appears on stage, even if those variables and functions are declared in the
clip’s load handler.

e The enterFrame event never occurs on the same frame as the load or the
unload event. The load and unload events supplant enterFrame for the frames
where a clip appears on the Stage and leaves the Stage.

e On each frame, code in a clip’'s enterFrame handler is executed before code
on the clip’s parent timeline. Using an enterFrame handler, we may, there-
fore, change the properties of a clip’s parent timeline and then immediately
use the new values in that timeline’s code, all on the same frame.

Copying Clip Event Handlers

A quick point that has major ramifications: movie clip event handlers are dupli-
cated when a movie clip is duplicated via the duplicateMovieClip() function. Sup-
pose, for example, we have a movie clip on stage called square, which has a
load event handler defined:

onClipEvent (load) ({

trace("movie loaded");

}

4~ ~4]e

é ,ch10.16364 Page 223 Monday, April 16, 2001 1:52 PM

Refreshing the Screen with updateAfterEvent 223

What happens when we duplicate square to create square2?
square.duplicateMovieClip ("square2", 0);

Because the load handler is copied to square2 when we duplicate square, the
birth of square2 causes its Jload handler to execute, which displays “movie
loaded” in the Output window. By using this automatic retention of handlers, we
can create slick recursive functions with very powerful results. For a demonstra-
tion that only scratches the surface of what’s possible, refer to Example 10-2.

Refreshing the Screen
with updateAfterEvent

As we learned earlier in “Order of Execution,” the mouseDown, mouselUp,
mouseMove, keyDown, and keyUp event handlers are executed immediately upon
the occurrence of those events. Immediately means immediately—even if the
event in question occurs between the rendering of frames.

This immediacy can give a movie great responsiveness, but that responsiveness
can easily be lost. By default, the visual effects of a mouseDown, mouseUp,
mouseMove, keyDown, or keyUp event handler are not physically rendered by the
Flash Player until the next available frame is rendered. To really see this in action,
create a single-frame movie with a frame rate of 1 frame per second, and place a
movie clip with the following code on stage:

onClipEvent (mouseDown) {

X t+= 2;

}
Then, test the movie and click the mouse as fast as you can. You'll see that all
your clicks are registered, but the movie clip moves only once per second. So, if
you click 6 times between frames, the clip will move 12 pixels to the right when
the next frame is rendered. If you click 3 times, the clip will move 6 pixels. Each
execution of the mouseDown handler is registered between frames, but the results
are displayed only when each frame is rendered. This can have dramatic effects on
certain forms of interactivity.

Fortunately, we can force Flash to immediately render any visual change that takes
place during a user-input event handler without waiting for the next frame to
come around. We simply use the wupdateAfterEvent() function from inside our
event handler, like this:

onClipEvent (mouseDown) {
X += 2;
updateAfterEvent () ;

}

é ,ch10.16364 Page 224 Monday, April 16, 2001 1:52 PM

224 Chapter 10: Events and Event Handlers

The updateAfterEvent() function is available for use only with the mouseDown,
mouselUp, mouseMove, keyDown, and keyUp events. It is often essential for smooth
and responsive visual behavior associated with user input. Later, in Example 10-8,
we'll use updateAfterEvent() to ensure the smooth rendering of a custom pointer.
Note, however, that button events do not require an explicit updateAfterEvent()
function call. Buttons naturally update between frames.

Code Reusability

When using button events and movie clip events, don’t forget the code-centraliza-
tion principles we learned in Chapter 9. Always try to prevent unnecessary dupli-
cation and intermingling of code across movie elements. If you find yourself
entering the same code in more than one event handler’s body, it may not be wise
to attach that code directly to the object. Try generalizing your code, pulling it off
the object and placing it in a code repository somewhere in your movie; often the
best place is the main timeline.

In many cases, it’s a poor idea to hide statements inside a button or clip handler.
Remember that encapsulating your code in a function and calling that function
from your handler makes your code reusable and easy to find. This is particularly
true of buttons—I rarely place anything more than a function-invocation statement
directly on a button. For movie clips, you'll need to employ keener judgment, as
placing code directly on clips can often be a healthy part of a clean, self-contained
code architecture. Experiment with different approaches until you find the right
balance for your needs and skill level. Regardless, it always pays to be mindful of
redundancy and reusability issues.

For an example of the difference between attaching code to buttons versus calling
functions from buttons, see “Centralizing Code” in Chapter 9.

Dynamic Movie Clip Event Handlers

Early in this chapter, we learned about two kinds of events in Flash—those that
are attached to movie clips and buttons and those that are attached to other data
objects such as XML and XMLSocket. To create event handlers for data objects, we
assign the handler function name as a property of the object. Recall the syntax to
add a function dynamically:

myXMLDoc.onLoad = function () { trace("all done loading!"); };

Dynamic function assignment lets us change the behavior of the handler during
movie playback. All we have to do is reassign the handler property:

myXMLDoc.onLoad = function () { gotoAndPlay ("displayData"); };

4~ ~4]e

é ,ch10.16364 Page 225 Monday, April 16, 2001 1:52 PM

Event Handlers Applied 225

Or we can even disable the handler altogether:
myXMLDoc.onLoad = function () { return; };

Unfortunately, handlers of movie clip and button events are not nearly so flexible;
they cannot be changed or removed during movie playback. Furthermore, movie
clip event handlers cannot be attached to the main movie timeline of any movie!
It’s impossible to directly create an event handler for a movie’s _root clip.

In order to work around these limitations, we can—in the case of the enterFrame
and the user-input events—use empty movie clips to simulate dynamic event-han-
dler removal and alteration. Empty movie clips even let us simulate _root-level
events. We've already seen the technique in Chapter 8, where we learned how to
create an event loop as follows:

1. Create an empty movie clip named process.

2. Place another empty clip called eventClip inside process.

3. On eventClip, attach the desired event handler. The code in the
eventClip’s handler should target the process clip’s host timeline, like this:

onClipEvent (mouseMove) {
_parent._parent.doSomeFunction() ;
}

4. To export process for use with the attachMovie() function, select it in the
Library and choose Options — Linkage. Set Linkage to Export This Symbol,
and assign an appropriate identifier (e.g., “mouseMoveProcess”).

5. Finally, to engage the event handler, attach the process clip to the appropri-
ate timeline using attachMovie().

6. To disengage the handler, remove the process clip using removeMovieClip().

For step-by-step instructions on how to use this technique with the enterFrame
event, see “Flash 5 Clip Event Loops” in Chapter 8.

Event Handlers Applied

We'll conclude our exploration of ActionScript events and event handlers with a
few real-world examples. These are simple applications, but they give us a sense
of how flexible event-based programming can be. The last two examples are avail-
able for download from the online Code Depot.

Example 10-7 makes a clip shrink and grow.

Example 10-7. Oscillating the Size of a Movie Clip

onClipEvent (load) {
var shrinking = false;

4~ ~4]e

,ch10.16364 Page 226 Monday, April 16, 2001 1:52 PM

226 Chapter 10: Events and Event Handlers

Example 10-7. Oscillating the Size of a Movie Clip (continued)

var maxHeight
var minHeight
}

300;
30;

onClipEvent (enterFrame) {
if (_height < maxHeight && shrinking == false) {
_height += 10;
_width += 10;
} else {
shrinking = true;

}

if (shrinking == true) {

if (_height > minHeight) {
_height -= 10;
_width -= 10;

} else {
shrinking = false;
_height += 10; // Increment here so we don't
_width += 10; // miss a cycle

}

}

Example 10-8 simulates a custom mouse pointer by hiding the normal system
pointer and making a clip follow the mouse location around the screen. In the
example, the mouseDown and mouseUp handlers resize the custom pointer slightly
to indicate mouseclicks.

Example 10-8. A Custom Mouse Pointer

onClipEvent (load) ({
Mouse.hide() ;

}

onClipEvent (mouseMove) {

_x = _root._xmouse;
_y = _root._ymouse;
updateAfterEvent () ;

}

onClipEvent (mouseDown) {

_width *= .5;
_height *= .5;
updateAfterEvent () ;

}

onClipEvent (mouseUp) ({
_width *= 2;
_height *= 2;
updateAfterEvent () ;

}

é ,ch10.16364 Page 227 Monday, April 16, 2001 1:52 PM

Onward! 227

Finally, simply to prove the power of the ActionScript movie clip event handlers,
Example 10-9 turns a movie clip into a customized button using mouseMove to
check for rollovers, mouseDown and mouseUp to check for button clicks, and the
hitTest() function to make hit detection a snap. This example assumes that the clip
with the handlers has three keyframes labeled up, down, and over (correspond-
ing with the usual button states).

Example 10-9. A Movie Clip Button

onClipEvent (load) ({
stop () ;
}

onClipEvent (mouseMove) {
if (hitTest (_root._xmouse, _root._ymouse, true) && !buttonDown) {
this.gotoAndStop ("over") ;
} else if (!'hitTest(_root._xmouse, _root._ymouse, true) && !buttonDown) {
this.gotoAndStop ("up") ;
}
updateAfterEvent () ;
}

onClipEvent (mouseDown) {
if (hitTest (_root._xmouse, _root._ymouse, true)) {
buttonDown = true;
this.gotoAndStop ("down") ;
}
updateAfterEvent () ;
}

onClipEvent (mouseUp) {
buttonDown = false;
if (!'hitTest (_root._xmouse, _root._ymouse, true)) {
this.gotoAndStop ("up") ;
} else {
this.gotoAndStop ("over") ;

}
updateAfterEvent () ;

}

Onward!

With statements, operators, functions, and now events and event handlers under
our belt, we've learned how all of the internal tools of ActionScript work. To
round out our understanding of the language, in the next three chapters we’ll
explore three extremely important datatypes: arrays, objects, and movie clips.

