
282
This is the Title of the Book, eMatter Edition

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Chapter 13

13
Movie Clips

Every Flash document contains a Stage—on which we place shapes, text, and
other visual elements—and a main timeline, through which we define changes to
the Stage’s contents over time. The Stage (i.e., the main movie) may contain inde-
pendent submovies, christened movie clips (or clips for short). Each movie clip has
its own independent timeline and canvas (the Stage is the canvas of the main
movie) and can even contain other movie clips. A clip that contains another clip is
referred to as that clip’s host clip or parent clip.

A single Flash document can contain a hierarchy of interrelated movie clips. For
example, the main movie may contain a mountainous landscape. A separate movie
clip containing an animated character can be moved across the landscape to give
the illusion that the character is walking. Another movie clip inside the character
clip can be used to independently animate the character’s blinking eyes. When the
independent elements in the cartoon character are played back together, they
appear as a single piece of content. Furthermore, each component can react intelli-
gently to the others—we can tell the eyes to blink when the character stops mov-
ing or tell the legs to walk when the character starts moving.

ActionScript offers detailed control over movie clips; we can play a clip, stop it,
move its playhead within its timeline, programmatically set its properties (like its
size, rotation, transparency level, and position on the Stage) and manipulate it as a
true programming object. As a formal component of the ActionScript language,
movie clips may be thought of as the raw material used to produce programmati-
cally generated content in Flash. For example, a movie clip may serve as a ball or
a paddle in a pong game, as an order form in a catalog web site, or simply as a
container for background sounds in an animation. At the end of this chapter we’ll
use movie clips as the hands on a clock and the answers in a multiple-choice quiz.

,ch13.16891 Page 282 Monday, April 16, 2001 1:53 PM

The “Objectness” of Movie Clips 283

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The “Objectness” of Movie Clips
As of Flash 5, movie clips can be manipulated like the objects we learned about in
Chapter 12, Objects and Classes. We may retrieve and set the properties of a clip,
and we may invoke built-in or custom methods on a clip. Unlike other objects, an
operation performed on a clip may have a visible or audible result in the Player.

Movie clips are not truly a type of object; there is no MovieClip class or construc-
tor, nor can we use an object literal to instantiate a movie clip in our code. So
what, then, are movie clips if not objects? They are members of their very own
object-like datatype, called movieclip (we can prove it by executing typeof on a
movie clip, which returns the string “movieclip”). The main difference between
movie clips and true objects is how they are allocated (created) and deallocated
(disposed of, or freed). For details, see Chapter 15, Advanced Topics. Despite this
technicality, however, we nearly always treat movie clips exactly like objects.

So how does the “objectness” of movie clips affect our use of them in Action-
Script? Most notably, it dictates the way we control clips and examine their proper-
ties. Movie clips can be controlled directly through built-in methods. For example:

eyes.play();

We can retrieve and set a movie clip’s properties using the dot operator, just as we
would access the properties of any object:

ball._xscale = 90;
var radius = ball._width / 2;

A variable in a movie clip is simply a property of that clip, and we can use the dot
operator to set and retrieve variable values:

myClip.myVariable = 14;
x = myClip.myVariable;

Submovie clips can be treated as object properties of their parent movie clips. We
therefore use the dot operator to access “nested” clips:

clipA.clipB.clipC.play();

and we use the reserved _parent property to refer to the clip containing the cur-
rent clip:

_parent.clipC.play();

Treating clips as objects affords us all the luxuries of convenient syntax and flexi-
ble playback control. But our use of clips as objects also lets us manage clips as
data; we can store a movie clip in an array element or a variable and even pass a
clip reference to a function as an argument! Here, for example, is a function that
moves a clip to a particular location on the screen:

,ch13.16891 Page 283 Monday, April 16, 2001 1:53 PM

284 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

function moveClip (clip, x, y) {
 clip._x = x;
 clip._y = y;
}
moveClip(ball, 14, 399);

Throughout the rest of this chapter, we’ll learn the specifics of referencing, con-
trolling, and manipulating movie clips as data objects.

Types of Movie Clips
Not all movie clips are created equal. In fact, there are three distinct types of clips
available in Flash:

• Main movies

• Regular movie clips

• Smart Clips

In addition to these three official varieties, we may define four further subcatego-
ries, based on our use of regular movie clips:

• Process clips

• Script clips

• Linked clips

• Seed clips

While these latter unofficial categories are not formal terms used in ActionScript,
they provide a useful way to think about programming with movie clips. Let’s take
a closer look at each movie clip type.

Main Movies

The main movie of a Flash document contains the basic timeline and Stage present
in every document. The main movie is the foundation for all the content in the
document, including all other movie clips. We sometimes call the main movie the
main timeline, the main movie timeline, the main Stage, or simply the root.

Main movies may be manipulated in much the same way as regular movie clips,
however:

• A main movie cannot be removed from a .swf file (although a .swf file, itself,
may be removed from the Flash Player).

• The following movie clip methods do not work when invoked on a main
movie: duplicateMovieClip(), removeMovieClip(), swapDepths().

,ch13.16891 Page 284 Monday, April 16, 2001 1:53 PM

Types of Movie Clips 285

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

• Event handlers cannot be attached to a main movie.

• Main movies can be referenced through the built-in, global _root and _leveln
properties.

Note that while each .swf file contains only one main movie, more than one .swf
may reside in the Flash Player at once—we may load multiple .swf documents
(and therefore multiple main movies) onto a stack of levels via the loadMovie()
and unloadMovie() functions, which we’ll study later.

Regular Movie Clips

Regular movie clips are the most common and fundamental content containers;
they hold visual elements and sounds and can even react to user input and movie
playback through event handlers. For JavaScript programmers who are used to
working with DHTML, it may be helpful to think of the main movie as being anal-
ogous to an HTML document object and regular movie clips as being analogous to
that document’s layer objects.

Smart Clips

Introduced in Flash 5, a Smart Clip is a regular movie clip that includes a graphi-
cal user interface used to customize the clip’s properties in the authoring tool.
Smart Clips are typically developed by advanced programmers to provide an easy
way for less-experienced Flash authors to customize a movie clip’s behavior with-
out knowing how the code of the clip works. We’ll cover Smart Clips in detail in
Chapter 16, ActionScript Authoring Environment.

Process Clips

A process clip is a movie clip used not for content but simply to repeatedly exe-
cute a block of code. Process clips may be built with an enterFrame event han-
dler or with a timeline loop as we saw under “Timeline and Clip Event Loops” in
Chapter 8, Loop Statements.

Process clips are ActionScript’s unofficial alternative to the setTimeout() and
setInterval() methods of the JavaScript window object.

Script Clips

Like a process clip, a script clip is an empty movie clip used not for content but for
tracking some variable or executing some script. For example, we may use a script
clip to hold event handlers that detect keypresses or mouse events.

,ch13.16891 Page 285 Monday, April 16, 2001 1:53 PM

286 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Linked Clips

A linked clip is a movie clip that either exports from or imports into the Library of
a movie. Export and import settings are available through every movie clip’s Link-
age option, found in the Library. We most often use linked clips when dynami-
cally generating an instance of a clip directly from a Library symbol using the
attachMovie() clip method, as we’ll see later.

Seed Clips

Before the attachMovie() method was introduced in Flash 5, we used the
duplicateMovieClip() function to create new movie clips based on some existing
clip, called a seed clip. A seed clip is a movie clip that resides on stage solely for
the purpose of being copied via duplicateMovieClip(). With the introduction of
attachMovie(), the need for seed clips has diminished. However, we still use seed
clips and duplicateMovieClip() when we wish to retain a clip’s event handlers and
transformations in the process of copying it.

In a movie that makes heavy use of duplicateMovieClip() to dynamically generate
content, it’s common to see a row of seed clips on the outskirts of the movie can-
vas. The seed clips are used only to derive duplicate clips and are, therefore, kept
off stage.

Creating Movie Clips
We usually treat movie clips just like data objects—we set their properties with the
dot operator; we invoke their methods with the function-call operator (parenthe-
ses); and we store them in variables, array elements, and object properties. We do
not, however, create movie clips in the same way we create objects. We cannot lit-
erally describe a movie clip in our code as we might describe an object with an
object literal. And we cannot generate a movie clip with a movie clip constructor
function, like this:

myClip = new MovieClip(); // Nice try buddy, but it won’t work

Instead, we create movie clips directly in the authoring tool, by hand. Once a clip
is created, we can use commands such as duplicateMovieClip() and attachMovie()
to make new, independent duplicates of it.

Movie Clip Symbols and Instances

Just as all object instances are based on one class or another, all movie clip
instances are based on a template movie clip, called a symbol (sometimes called a
definition). A movie clip’s symbol acts as a model for the clip’s content and struc-
ture. We must always have a movie clip symbol before we may generate a specific

,ch13.16891 Page 286 Monday, April 16, 2001 1:53 PM

Creating Movie Clips 287

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

clip object. Using a symbol, we can both manually and programmatically create
clips to be rendered in a movie.

A movie clip that is rendered on the Stage is called an instance. Instances are the
individual clip objects that can be manipulated with ActionScript; a symbol is the
mold from which all instances of a specific movie clip are derived. Movie clip sym-
bols are created in the Flash authoring tool. To make a new, blank symbol, we fol-
low these steps:

1. Select Insert ➝ New Symbol. The Symbol Properties dialog box appears.

2. In the Name field, type an identifier for the symbol.

3. Select the Movie Clip radio button.

4. Click OK.

Normally, the next step is to fill in the symbol’s canvas and timeline with the con-
tent of our movie clip. Once a symbol has been created, it resides in the Library,
waiting for us to use it to fashion an actual movie clip instance. It is, however, also
possible to convert a group of shapes and objects that already exist on stage into a
movie clip symbol. To do so, we follow these steps:

1. Select the desired shapes and objects.

2. Select Insert ➝ Convert to Symbol.

3. In the Name field, type an identifier for the symbol.

4. Select the Movie Clip radio button.

5. Click OK.

The shapes and objects we selected to create the new movie clip symbol will be
replaced by an unnamed instance of that new clip. The corresponding movie clip
symbol will appear in the Library, ready to be used to create further instances.

Creating Instances

There are three ways to create a new instance based on a movie clip symbol. Two
of these are programmatic; the other is strictly manual and is undertaken in the
Flash authoring tool.

Manually creating instances

We can create movie clip instances manually using the Library in the Flash author-
ing environment. By physically dragging a movie clip symbol out of the Library
and onto the Stage, we generate a new instance. An instance thus created should
be named manually via the Instance panel. (We’ll learn more about instance
names later.) Refer to “Using Symbols and Instances” in the Macromedia Flash
Help if you’ve never worked with movie clips in Flash.

,ch13.16891 Page 287 Monday, April 16, 2001 1:53 PM

288 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Creating instances with duplicateMovieClip()

Any instance that already resides on the Stage of a Flash movie can be duplicated
with ActionScript. We can then treat that independent copy as a completely sepa-
rate clip. Both manually created and programmatically created clip instances may
be duplicated. In other words, it’s legal to duplicate a duplicate.

In practice, there are two ways to duplicate an instance using duplicateMovieClip():

• We can invoke duplicateMovieClip() as a global function, using the following
syntax:

duplicateMovieClip(target, newName, depth);

where target is a string indicating the name of the instance we want to
duplicate. The newName parameter is a string that specifies the identifier for
the new instance, and depth is an integer that designates where, in the stack
of programmatically generated clips, we want to place the new instance.

• We can also invoke duplicateMovieClip() as a method of an existing instance:

myClip.duplicateMovieClip(newName, depth);

where myClip is the name of the clip we wish to duplicate, and newName and
depth both operate as before.

When created via duplicateMovieClip(), an instance is initially positioned directly
on top of its seed clip. Our first post-duplication task, therefore, is usually moving
the duplicated clip to a new position. For example:

ball.duplicateMovieClip("ball2", 0);
ball2._x += 100;
ball2._y += 50;

Duplicated instances whose seed clips have been transformed (e.g., colored,
rotated, or resized) via ActionScript or manually in the Flash authoring tool inherit
the initial transformation of their seed clips. Subsequent transformations to the
seed clip do not affect duplicated instances. Likewise, each instance can be trans-
formed separately. For example, if a seed clip is rotated 45 degrees and then an
instance is duplicated, the instance’s initial rotation is 45 degrees:

seed._rotation = 45;
seed.duplicateMovieClip("newClip", 0);
trace(newClip._rotation); // Displays: 45

If we then rotate the instance by 10 degrees, its rotation is 55 degrees, but the
seed clip’s rotation is still 45 degrees:

newClip._rotation += 10;
trace(newClip._rotation); // Displays: 55
trace(seed._rotation); // Displays: 45

,ch13.16891 Page 288 Monday, April 16, 2001 1:53 PM

Creating Movie Clips 289

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

By duplicating many instances in a row and adjusting the transformation of each
duplicate slightly, we can achieve interesting compound transformations (the tech-
nique is shown under the load event in Example 10-2).

Using duplicateMovieClip() to duplicate clips via ActionScript offers other advan-
tages over placing clips manually in a movie, such as the ability to:

• Control exactly when a clip appears on the Stage relative to a program’s
execution.

• Control exactly when a clip is removed from the Stage relative to a program’s
execution.

• Assign the layer depth of a duplicated clip relative to other duplicated clips.
(This was more of a concern in Flash 4, which did not allow the layer stack of
a movie to be altered.)

• Copy a clip’s event handlers.

These abilities give us advanced programmatic control over the content in a
movie. A salient example is that of a spaceship game in which a missile movie clip
might be duplicated when the ship’s fire button is pressed. That missile clip might
be moved programmatically, then placed behind an obstacle in the movie, and
finally, be removed after colliding with an enemy craft. Manual clips do not offer
that kind of flexibility. With a manually created clip, we must preordain the birth
and death of the clip using the timeline and, in Flash 4, we couldn’t change the
clip’s layer.

Creating instances with attachMovie()

Like duplicateMovieClip(), the attachMovie() method lets us create a movie clip
instance; however, unlike duplicateMovieClip() it does not require a previously
created instance—it creates a new instance directly from a symbol in a movie’s
Library. In order to use attachMovie() to create an instance of a symbol, we must
first export that symbol from the Library. Here’s how:

1. In the Library, select the desired symbol.

2. In the Library’s Options menu, select Linkage. The Symbol Linkage Properties
dialog box appears.

3. Select the Export This Symbol radio button.

4. In the Identifier field, type a unique name for the clip symbol. The name may
be any string—often simply the same name as the symbol itself—but should
be different from all other exported clip symbols.

5. Click OK.

,ch13.16891 Page 289 Monday, April 16, 2001 1:53 PM

290 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Once a clip symbol has been exported, we may attach new instances of that sym-
bol to an existing clip by invoking attachMovie() with the following syntax:

myClip.attachMovie(symbolIdentifier, newName, depth);

where myClip is the name of the clip to which we want to attach the new
instance. If myClip is omitted, attachMovie() attaches the new instance to the cur-
rent clip (the clip on which the attachMovie() statement resides). The
symbolIdentifier parameter is a string containing the name of the symbol we’re
using to generate our instance, as specified in the Identifier field of the Linkage
options in the Library; newName is a string that specifies the identifier for the new
instance we’re creating; and depth is an integer that designates where in the host
clip’s layered stack to place the new instance.

When we attach an instance to another clip, that instance is positioned in the cen-
ter of the clip, among the clip’s layered stack (we’ll discuss clip stacks soon).
When we attach an instance to the main movie of a document, that instance is
positioned in the upper-left corner of the Stage, at coordinates (0, 0).

Instance Names

When we create instances, we assign them identifiers, or instance names, that
allow us to refer to them later. Notice how this differs from regular objects. When
we create a normal data object (not a movie clip), we must assign that object to a
variable or other data container in order for the object to persist and in order for
us to refer to it by name in the future. For example:

new Object(); // Object dies immediately after it's created,
 // and we can't refer to it
var thing = new Object(); // Object reference is stored in thing,
 // and can later be referred to as thing

Movie clip instances need not be stored in variables in order for us to refer to
them. Unlike normal data objects, clip instances are accessible in ActionScript via
their instance names as soon as they are created. For example:

ball._y = 200;

Each clip’s instance name is stored in its built-in property, _name, which can be
both retrieved and set:

ball._name = "circle"; // Change ball's name to circle

When we change an instance’s _name property, all future references to the
instance must use the new name. For example, after the previous code executes,
the ball reference ceases to exist, and we’d subsequently use circle to refer to
the instance.

,ch13.16891 Page 290 Monday, April 16, 2001 1:53 PM

Creating Movie Clips 291

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The manner in which an instance initially gets its instance name depends on how
it was created. Programmatically generated instances are named by the function
that creates them. Manually created instances are normally assigned explicit
instance names in the authoring tool through the Instance panel, as follows:

1. Select the instance on stage.

2. Select Modify ➝ Instance.

3. Enter the instance name into the Name field.

If a manually created clip is not given an instance name, it is assigned one auto-
matically by the Flash Player at runtime. Automatic instance names fall in the
sequence instance1, instance2, instance3...instancen, but these names
don’t meaningfully describe our clip’s content (and we must guess at the auto-
matic name that was generated).

Because instance names are identifiers, we must compose them
according to the rules for creating a legal identifier, as described in
Chapter 14, Lexical Structure. Most notably, instance names should
not begin with a number, nor include hyphens or spaces.

Importing External Movies

We’ve discussed creating movie clip instances within a single document, but the
Flash Player can also display multiple .swf documents simultaneously. We can use
loadMovie() (as either a global function or a movie clip method) to import an
external .swf file into the Player and place it either in a clip instance or on a num-
bered level above the base movie (i.e., in the foreground relative to the base
movie). By managing content in separate files, we gain precise control over the
download process. Suppose, for example, we have a movie containing a main
navigation menu and five subsections. Before the user can navigate to section five,
sections one through four must have finished downloading. But if we place each
section in a separate .swf file, the sections can be loaded in an arbitrary order, giv-
ing the user direct access to each section.

When an external .swf is loaded into a level, its main movie timeline becomes the
root timeline of that level, and it replaces any prior movie loaded in that level.
Similarly when an external movie is loaded into a clip, the main timeline of the
loaded movie replaces that clip’s timeline, unloading the existing graphics, sounds,
and scripts in that clip.

Like duplicateMovieClip(), loadMovie() may be used both as a standalone func-
tion and an instance method. The standalone syntax of loadMovie() is as follows:

,ch13.16891 Page 291 Monday, April 16, 2001 1:53 PM

292 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

loadMovie(URL, location)

where URL specifies the address of the external .swf file to load. The location
parameter is a string indicating the path to an existing clip or a document level
that should host the new .swf file (i.e., where the loaded movie should be placed).
For example:

loadMovie("circle.swf", "_level1");
loadMovie("photos.swf", "viewClip");

Because a movie clip reference is converted to a path when used as a string,
location may also be supplied as a movie clip reference, such as _level1
instead of "_level1". Take care when using references, however. If the refer-
ence supplied does not point to a valid clip, the loadMovie() function has unex-
pected behavior—it loads the external .swf into the current timeline. See Part III,
Language Reference for more details, or see “Method versus global function over-
lap issues,” later in this chapter.

The clip method version of loadMovie() has the following syntax:

myClip.loadMovie(URL);

When used as a method, loadMovie() assumes we’re loading the external .swf into
myClip, so the location parameter required by the standalone loadMovie() func-
tion is not needed. We, therefore, supply only the path to the .swf to load via the
URL parameter. Naturally, URL can be a local filename, such as:

viewClip.loadMovie("photos.swf");

When placed into a clip instance, a loaded movie adopts the properties of that clip
(e.g., the clip’s scale, rotation, color transformation, etc.).

Note that myClip must exist in order for loadMovie() to be used in its method
form. For example, the following attempt to load circle.swf will fail if _level1 is
empty:

_level1.loadMovie("circle.swf");

Load movie execution order

The loadMovie() function is not immediately executed when it appears in a state-
ment block. In fact, it is not executed until all other statements in the block have
finished executing.

We cannot access an externally loaded movie’s properties or meth-
ods in the same statement block as the loadMovie() invocation that
loads it into the Player.

,ch13.16891 Page 292 Monday, April 16, 2001 1:53 PM

Movie and Instance Stacking Order 293

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Because loadMovie() loads an external file (usually over a network), its execution
is asynchronous. That is, loadMovie() may finish at any time, depending on the
speed of the file transfer. Therefore, before we access a loaded movie, we should
always check that the movie has finished transferring to the Player. We do so with
what’s commonly called a preloader—a simple bit of code that checks how much
of a file has loaded before allowing some action to take place. Preloaders can be
built with the _totalframes and _framesloaded movie clip properties and the
getBytesLoaded() and getBytesTotal() movie clip methods. See the appropriate
entries in Part III for sample code. See also Example 10-4, which shows how to
build a preloader using the data clip event.

Movie and Instance Stacking Order
All movie clip instances and externally loaded movies displayed in the Player
reside in a visual stacking order akin to a deck of cards. When instances or exter-
nally loaded .swf files overlap in the Player, one clip (the “higher” of the two)
always covers up the other clip (the “lower” of the two). Simple enough in prin-
ciple, but the main stack, which contains all the instances and .swf files, is actu-
ally divided into many smaller substacks. We’ll look at these substacks
individually first, then see how they combine to form the main stack. (The stack

Using loadMovie() with attachMovie()
Loading an external .swf file into a clip instance with loadMovie() has a sur-
prising result—it prevents us from attaching instances to that clip via
attachMovie(). Once a clip has an external .swf file loaded into it, that clip may
no longer bear attached movies from the Library from which it originated. For
example, if movie1.swf contains an instance named clipA, and we load
movie2.swf into clipA, we may no longer attach instances from movie1.swf ’s
Library to clipA.

Why? The attachMovie() method works only within a single document. That
is, we can’t attach instances from one document’s Library to another document.
When we load a .swf file into a clip, we are populating that clip with a new
document and, hence, a new (different) Library. Subsequent attempts to attach
instances from our original document to the clip fail because the clip’s Library
no longer matches its original document’s Library. However, if we unload the
document in the clip via unloadMovie(), we regain the ability to attach movies
to the clip from its own document Library.

Similarly, loading a .swf file into a clip with loadMovie() prevents us from copy-
ing that clip via duplicateMovieClip().

,ch13.16891 Page 293 Monday, April 16, 2001 1:53 PM

294 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

in this discussion has no direct relation to the LIFO and FIFO stacks discussed in
Chapter 11, Arrays.)

The Internal Layer Stack

Instances created manually in the Flash authoring tool reside in a stack called the
internal layer stack. This stack’s order is governed by the actual layers in a movie’s
timeline; when two manually created instances on separate timeline layers over-
lap, the instance on the uppermost layer obscures the instance on the lowermost
layer.

Furthermore, because multiple clips may reside on a single timeline layer, each
layer in the internal layer stack actually maintains its own ministack. Overlapping
clips that reside on the same layer of a timeline are stacked in the authoring tool
via the Modify ➝ Arrange commands.

As of Flash 5, we can swap the position of two instances in the internal layer stack
using the swapDepths() method, provided they reside on the same timeline (that
is, the value of the two clips’ _parent property must be the same). Prior to Flash
5, there was no way to alter the internal layer stack via ActionScript.

The Programmatically Generated Clip Stack

Programmatically generated instances are stacked separately from the manually
created instances held in the internal layer stack. Each instance has its own pro-
grammatically generated clip stack that hold clips created via duplicateMovieClip()
and attachMovie(). The stacking order for these clips varies depending on how
they were created.

How clips generated via attachMovie() are added to the stack

A new instance generated via attachMovie() is always stacked above (i.e., in the
foreground relative to) the clip to which it was attached. For example, suppose we
have two clips—X and Y—in the internal layer structure of a movie and that X
resides on a layer above Y. Now further suppose we attach a new clip, A, to X and
a new clip, B, to Y:

x.attachMovie("A", "A", 0);
y.attachMovie("B", "B", 0);

In our scenario, the clips would appear from top to bottom in this order: A, X, B,
Y, as shown in Figure 13-1.

Once a clip is generated, it too provides a separate space above its content for
more programmatically generated clips. That is, we may attach clips to attached
clips.

,ch13.16891 Page 294 Monday, April 16, 2001 1:53 PM

Movie and Instance Stacking Order 295

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Clips attached to the _root movie of a Flash document are placed in the _root
movie’s programmatically generated clip stack, which appears in front of all clips
in the _root movie, even those that contain programmatically generated content.

Let’s extend our earlier example. If we were to attach clip C to the _root of the
movie that contained clips X, Y, A, and B, then clip C would appear in front of all
the other clips. Figure 13-2 shows the extended structure.

How clips generated via duplicateMovieClip() are added to the stack

Each instance duplicated via duplicateMovieClip() is assigned to a programmatic
stack in accordance with how that instance’s seed clip was created:

• If the instance’s seed clip was created manually (or was duplicated using
duplicateMovieClip() from a clip that was created manually), then the new
instance is placed in the stack above _root.

• If, on the other hand, the instance’s seed clip was created with attachMovie(),
then the new instance is placed in its seed clip’s stack.

Let’s return to our example to see how this works. If we create clip D by duplicating
clip X (which was created manually), then clip D is placed in the stack above _root,

Figure 13-1. A sample instance stack

Figure 13-2. An instance stack showing a clip attached to _root

Attached Instance “A”

Manually Created Instance “X”

Attached Instance “B”

Manually Created Instance “Y”

Timeline Layer 2

Timeline Layer 1

Attached Instance “A”

Manually Created Instance “X”

Attached Instance “B”

Manually Created Instance “Y”

Timeline Layer 2

Timeline Layer 1

Attached Instance “C”Programmatically-generated
clips attached to _root

,ch13.16891 Page 295 Monday, April 16, 2001 1:53 PM

296 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

with clip C. Similarly, if we create clip E by duplicating clip D (which is derived from
clip X, which was created manually), then E is also placed in the stack above _root,
with C and D. But if we create clip F by duplicating clip A (which was created with
attachMovie()), then F is placed in the stack above X, with clip A. Figure 13-3 is
worth a thousand words.

Assigning depths to instances in the programmatically
generated clip stack

You may be wondering what determines the stacking order of clips C, D, and E, or
of clips A and F in Figure 13-3. The stacking order of a programmatically gener-
ated clip is determined by the depth argument passed to the attachMovie() or
duplicateMovieClip() function, and can be changed at any time using the
swapDepths() function. Each programmatically generated clip’s depth (sometimes
called its z-index) determines its position within a particular stack of programmati-
cally generated clips.

The depth of a clip may be any integer and is measured from the bottom up, so –1
is lower than 0; 1 is higher than (i.e., in front of) depth 0; depth 2 is higher still,
and so on. When two programmatically generated clips occupy the same position
on screen, the one with the greater depth value is rendered in front of the other.

Layers are single-occupant dwellings. Only one clip may occupy a layer in the
stack at a time—placing a clip into an occupied layer displaces (and deletes) the
layer’s previous occupant.

It’s okay for there to be gaps in the depths of clips; you can have a clip at depth 0,
another at depth 500, and a third one at depth 1000. There’s no performance hit or

Figure 13-3. An instance stack showing various duplicated clips

Attached Instance “A”

Manually Created Instance “X”

Attached Instance “B”

Manually Created Instance “Y”

Timeline Layer 2

Timeline Layer 1

Attached Instance “C”

Programmatically generated
clips attached to _root Duplicated Instance “D”

Duplicated Instance “E”

Duplicated Instance “F”

,ch13.16891 Page 296 Monday, April 16, 2001 1:53 PM

Movie and Instance Stacking Order 297

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

increase in memory consumption that results from having gaps in your depth
assignments.

The .swf Document “_level” Stack

In addition to the internal layer stack and the programmatically generated clip
stack, there’s a third (and final) kind of stack, the document stack (or level stack),
which governs the overlapping not of instances, but of entire .swf files loaded into
the Player via loadMovie().

The first .swf file loaded into the Flash Player is placed in the lowest level of the
document stack (represented by the global property _level0). If we load any
additional .swf files into the Player after that first document, we may optionally
place them in front of the original document by assigning them to a level above
_level0 in the document stack. All of the content in the higher-level documents
in the level stack appears in front of lower-level documents, regardless of the
movie clip stacking order within each document.

Just as the programmatically generated clip stack allows only one clip per layer,
the document stack allows only one document per level. If we load a .swf file into
an occupied level, the level’s previous occupant is replaced by the newly loaded
document. For example, you can supplant the original document by loading a
new .swf file into _level0. Loading a new .swf file into _level1 would visually
obscure the movie in _level0, but not remove it from the Player.

Figure 13-4 summarizes the relationships of the various stacks maintained by the
Flash Player.

Stacks and Order of Execution

The layering of movie clips and timeline layers affects code execution order. The
rules are as follows:

• Code on frames in different timeline layers always executes from top to bottom.

• When manually created instances are initially loaded, code in their timeline
and load event handlers executes according to the Load Order set in the Pub-
lish Settings of a Flash document—either Bottom Up, which is the default, or
Top Down.

For example, suppose we have a timeline with two layers, top and bottom,
where top is above bottom in the layer stack. We place clip X on layer top and
clip Y on layer bottom. If the Load Order of the document is set to Bottom Up,
then the code in clip Y will execute before the code in clip X. If, on the other
hand, the Load Order of the document is set to Top Down, then the code in

,ch13.16891 Page 297 Monday, April 16, 2001 1:53 PM

298 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

clip X will execute before the code in clip Y. This execution order applies only
to the frame on which X and Y appear for the first time.

• Once loaded, all instances of a movie are added to an execution order, which
is the reverse of the load order; the last instance added to the movie is always
the first to have its code executed.

Use caution when relying on these rules. Layers are mutable, so you should avoid
producing code that relies on their relative position. Strive to create code that exe-
cutes safely without relying on the execution order of the clips in the stack. We
can avoid some of the issues presented by the execution stack by keeping all our
code on a scripts layer at the top of each code-bearing timeline.

Figure 13-4. The complete Flash Player movie clip stack

FLASH PLAYER

Depth 2
Depth 1
Depth 0

La
ye

r 3 Instances attached to clips on Layer 3, or
duplicates thereof

Manually created instances

La
ye

r 2 Instances attached to clips on Layer 2, or
duplicates thereof

Manually created instances

La
ye

r 1 Instances attached to clips on Layer 1, or
duplicates thereof

Manually created instances

Programmatically
Generated
Clip Stack*

Internal Layer
Stack*

Depth 2
Depth 1
Depth 0

La
ye

r 3 Instances attached to clips on Layer 3, or
duplicates thereof

Manually created instances

La
ye

r 2 Instances attached to clips on Layer 2, or
duplicates thereof

Manually created instances

La
ye

r 1 Instances attached to clips on Layer 1, or
duplicates thereof

Manually created instances

Programmatically
Generated
Clip Stack*

Internal Layer
Stack

Do
cu

me
nt

 Le
ve

l S
ta

ck
_level1 (movie B.swf)

_level0 (movie A.swf)

* The programmatically generated clip stack contains duplicated clips not
 based on attached seed clips and clips attached to _level1._root

,ch13.16891 Page 298 Monday, April 16, 2001 1:53 PM

Referring to Instances and Main Movies 299

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Referring to Instances and Main Movies
In the earlier sections, we learned how to create and layer movie clip instances
and external .swf files in the Flash Player. We must be able to refer to that content
in order to effectively control it with ActionScript.

We refer to instances and main movies under four general circumstances, when
we want to:

• Get or set a property of a clip or a movie

• Create or invoke a method of a clip or a movie

• Apply some function to a clip or a movie

• Manipulate a clip or a movie as data, for example, by storing it in a variable or
passing it as an argument to a function

While the circumstances under which we refer to clip instances and movies are
fairly simple, the tools we have for making references are many and varied.
We’ll spend the rest of this section exploring ActionScript’s instance- and movie-
referencing tools.

Using Instance Names

Earlier, we learned that movie clips are referred to by their instance names. For
example:

trace(myVariable); // Refer to a variable
trace(myClip); // Refer to a movie clip

In order to refer to an instance directly (as shown in the preceding trace() exam-
ple), the instance must reside on the timeline to which our code is attached. For
example, if we have an instance named clouds placed on the main timeline of a
document, we may refer to clouds from code attached to the main timeline as
follows:

// Set a property of the instance
clouds._alpha = 60;
// Invoke a method on the instance
clouds.play();
// Place the instance in an array of other related instances
var background = [clouds, sky, mountains];

If the instance we want to reference does not reside on the same timeline as our
code, we must use a more elaborate syntax, as described later under “Referring to
Nested Instances.”

,ch13.16891 Page 299 Monday, April 16, 2001 1:53 PM

300 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Referring to the Current Instance or Movie

We don’t always have to use an instance’s name when referring to a clip. Code
attached to a frame in an instance’s timeline may refer to that instance’s properties
and methods directly, without any instance name.

For example, to set the _alpha property of a clip named cloud, we could place
the following code on a frame in the cloud timeline:

_alpha = 60;

Similarly, to invoke the play() method on cloud from a frame in the cloud time-
line, we could simply use:

play();

This technique may be used on any timeline, including timelines of main movies. For
example, the following two statements would be synonymous if attached to a frame
on the main timeline of a Flash document. The first refers to the main movie implic-
itly, whereas the second refers to the main movie explicitly via the global _root
property:

gotoAndStop(20);
_root.gotoAndStop(20);

As we learned in Chapter 10, Events and Event Handlers, code in an instance’s
event handler may, like timeline code, also refer to properties and methods
directly. For example, we could attach the following event handler to cloud. This
handler sets a property of, and then invokes a method on, cloud without refer-
ring to the cloud instance explicitly:

onClipEvent (load) {
 _alpha = 60;
 stop();
}

However, not all methods may be used with an implicit reference to a movie clip.
Any movie clip method that has the same name as a corresponding global func-
tion (such as duplicateMovieClip() or unloadMovie()) must be invoked with an
explicit instance reference. Hence, when in doubt, use an explicit reference. We’ll
have more to say about method and global function conflicts later in “Method ver-
sus global function overlap issues.”

Self-references with the this keyword

When we want to explicitly refer to the current instance from a frame in its timeline
or from one of its event handlers, we may use the this keyword. For example, the

,ch13.16891 Page 300 Monday, April 16, 2001 1:53 PM

Referring to Instances and Main Movies 301

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

following statements would be synonymous when attached to a frame in the time-
line of our cloud instance:

_alpha = 60; // Implicit reference to the current timeline
this._alpha = 60; // Explicit reference to the current timeline

There are two reasons to use this to refer to a clip even when we can just refer
to the clip directly. When used without an explicit instance reference, certain
movie clip methods are mistaken for global functions by the interpreter. If we omit
the this reference, the interpreter thinks we’re trying to invoke the analogous
global function and complains that we’re missing the “target” movie clip parame-
ter. To work around the problem, we use this, as follows:

this.duplicateMovieClip("newClouds", 0); // Invoke a method on an instance

// If we omit the this reference, we get an error
duplicateMovieClip("newClouds", 0); // Oops!

Using this, we can conveniently pass a reference to the current timeline to func-
tions that operate on movie clips:

// Here's a function that manipulates clips
function moveTo (theClip, x, y) {
 theClip._x = x;
 theClip._y = y;
}

// Now let's invoke it on the current timeline
moveTo(this, 150, 125);

If you do a lot of object-oriented programming, be cautious when using the this
keyword to refer to instances and movies. Remember that inside a custom method
or an object constructor, this has a very different meaning and is not a reference
to the current timeline. See Chapter 12 for details.

Referring to Nested Instances

As we learned in the introduction to this chapter, movie clip instances are often
nested inside of one another. That is, a clip’s canvas may contain an instance of
another clip, which may itself contain instances of other clips. For example, a
game’s spaceship clip may contain an instance of a blinkingLights clip or a
burningFuel clip. Or a character’s face clip may include separate eyes, nose,
and mouth clips.

Earlier, we saw briefly how we could navigate up or down from any point in the
hierarchy of clip instances, much like you might navigate up and down a series of
subdirectories on your hard drive. Let’s examine this in more detail and see some
more examples.

,ch13.16891 Page 301 Monday, April 16, 2001 1:53 PM

302 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Let’s first consider how to refer to a clip instance that is nested inside of the cur-
rent instance. When a clip is placed on the timeline of another clip, it becomes a
property of that clip, and we can access it as we would access any object prop-
erty (with the dot operator). For example, suppose we place clipB on the canvas
of clipA. To access clipB from a frame in clipA’s timeline, we use a direct ref-
erence to clipB:

clipB._x = 30;

Now suppose clipB contains another instance, clipC. To refer to clipC from a
frame in clipA’s timeline, we access clipC as a property of clipB like this:

clipB.clipC.play();
clipB.clipC._x = 20;

Beautiful, ain’t it? And the system is infinitely extensible. Because every clip
instance placed on another clip’s timeline becomes a property of its host clip, we
can traverse the hierarchy by separating the instances with the dot operator, like so:

clipA.clipB.clipC.clipD.gotoAndStop(5);

Now that we’ve seen how to navigate down the instance hierarchy, let’s see how
we navigate up it to refer to the instance or movie that contains the current
instance. As we saw earlier, every instance has a built-in _parent property that
refers to the clip or main movie containing it. We use the _parent property like so:

myClip._parent

Recalling our recent example with clipA on the main timeline, clipB inside
clipA, and clipC inside clipB, let’s see how to use _parent and dot notation to
refer to the various clips in the hierarchy. Assume that the following code is
placed on a frame of the timeline of clipB:

_parent // A reference to clipA
this // A reference to clipB (the current clip)
this._parent // Another reference to clipA

// Sweet Sheila, I love this stuff! Let's try some more...
_parent._parent // A reference to clipA's parent (clipB's grandparent),
 // which is the main timeline in this case

Note that although it is legal to do so, it is unnecessarily roundabout to traverse
down the hierarchy using a reference to the clipC property of clipB only to
traverse back up the hierarchy using _parent. These roundabout references are
unnecessary but do show the flexibility of dot notation:

clipC._parent // A roundabout reference to clipB (the current timeline)
clipC._parent._parent._parent // A roundabout reference to the main timeline

Notice how we use the dot operator to descend the clip hierarchy and use the
_parent property to ascend it. If this is new to you, you should probably try
building the clipA, clipB, clipC hierarchy in Flash and using the code in our

,ch13.16891 Page 302 Monday, April 16, 2001 1:53 PM

Referring to Instances and Main Movies 303

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

example. Proper instance referencing is one of the fundamental skills of a good
ActionScript programmer.

Note that the hierarchy of clips is like a family tree. Unlike a typical family tree of
a sexually reproducing species in which each offspring has two parents, our clip
family tree expands asexually. That is, each household is headed by a single par-
ent who can adopt any number of children. Any clip (i.e., any node in the tree)
can have one and only one parent (the clip that contains it) but can have multiple
children (the clips that it contains). Of course, each clip’s parent can in turn have
a single parent, which means that each clip can have only one grandparent (not
the four grandparents humans typically have). See Figure 13-5.

Therefore, no matter how far you go down the family tree, if you go back up the
same number of steps you will always end up in the same place you started. It is
therefore pointless to go down the hierarchy only to come back up. However, it is
not pointless to go up the hierarchy and then follow a different path back down.
For example, suppose that the main timeline also contains clipD, which would
make clipD a “sibling” of clipA because both would have the main timeline as
their _parent. In that case, you can refer to clipD from a script attached to
clipB as follows:

_parent._parent.clipD // This refers to clipD, a child of the main
 // timeline (clipA's _parent) and therefore
 // a sibling of clipA

Note that the main timeline does not have a _parent property (main movies are
the top of any clip hierarchy and cannot be contained by another timeline); refer-
ences to _root._parent yield undefined.

Figure 13-5. A sample clip hierarchy

MAIN TIMELINE
_root

clipD clipA

clipB

clipC

_root is:
clipA’s parent,
clipD’s parent

clipD is:
_root’s child,
clipA’s sibling

clipA is:
_root’s child,
clipB’s parent,

clipC’s grandparent,
clipD’s sibling

clipB is:
clipA’s child,
clipC’s parent

clipC is:
clipB’s child

clipA’s grandchild

,ch13.16891 Page 303 Monday, April 16, 2001 1:53 PM

304 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Referring to Main Movies with _root and _leveln

Now that we’ve seen how to navigate up and down the clip hierarchy relative to
the current clip, let’s explore other ways to navigate along absolute pathways and
even among other documents stored in other levels of the Player’s document
stack. In earlier chapters, we saw how these techniques applied to variables and
functions; here we’ll learn how they can be used to control movie clips.

Referencing the current level’s main movie using _root

When an instance is deeply nested in a clip hierarchy, we can repeatedly use the
_parent property to ascend the hierarchy until we reach the main movie time-
line. But in order to ease the labor of referring to the main timeline from deeply
nested clips, we can also use the built-in global property _root, which is a short-
cut reference to the main movie timeline. For example, here we play the main
movie:

_root.play();

The _root property is said to be an absolute reference to a known point in the
clip hierarchy because unlike the _parent and this properties, which are rela-
tive to the current clip, the _root property is the same no matter which clip it is
referenced from. These are all equivalent:

_parent._root
this._root
_root

Therefore, you can and should use _root when you don’t know where a given
clip is nested within the hierarchy. For example, consider the following hierarchy
in which circle is a child of the main movie timeline and square is a child of
circle:

 main timeline
 circle
 square

Now consider this script attached to a frame in both circle and square:

_parent._x += 10 // Move this clip's parent clip 10 pixels to the right

When that code is executed from within circle, it will cause the main movie to
move 10 pixels to the right. When it is executed from within square, it will cause
circle (not the main movie) to move 10 pixels to the right. In order for the script
to move the main movie 10 pixels regardless of where the script is executed from,
it should be rewritten as:

_root._x += 10 // Move the main movie 10 pixels to the right

,ch13.16891 Page 304 Monday, April 16, 2001 1:53 PM

Referring to Instances and Main Movies 305

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Furthermore, the _parent property is not valid from within the main timeline; the
version of the script using _root would be valid when used in a frame of the
main timeline.

The _root property may happily be combined with ordinary instance references
to descend a nested-clip hierarchy:

_root.clipA.clipB.play();

References that start with _root refer to the same, known, starting point from any-
where in a document. There’s no guessing required.

Referencing other documents in the Player using _leveln

If we have multiple .swf files loaded in the document stack of the Flash Player, we
may refer to the main movie timelines of the various documents using the built-in
series of global properties _level0 through _leveln, where n represents the
level of the document we want to reference.

Therefore, _level0 represents the document in the lowest level of the document
stack (documents in higher levels will be rendered in the foreground). Unless a
movie has been loaded into _level0 via loadMovie(), _level0 is occupied by
the movie that was initially loaded when the Player started.

Here is an example that plays the main movie timeline of the document in level 3
of the Player’s document stack:

_level3.play();

Like the _root property, the _leveln property may be combined with ordinary
instance references via the dot operator:

_level1.clipA.stop();

As with references to _root, references to _leveln properties are called absolute
references because they lead to the same destination from any point in a document.

Note that _leveln and _root are not synonymous. The _root property is
always the current document’s main timeline, regardless of the level on which
the current document resides, whereas the _leveln property is a reference to the
main timeline of a specific document level. For example, suppose we place the
code _root.play() in myMovie.swf. When we load myMovie.swf onto level 5,
our code plays _level5’s main movie timeline. By contrast, if we place the code
_level2.play() in myMovie.swf and load myMovie.swf into level 5, our code
plays _level2’s main movie timeline not _level5’s. Of course, from within level
2, _root and _level2 are equivalent.

,ch13.16891 Page 305 Monday, April 16, 2001 1:53 PM

306 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Authoring Instance References with Insert Target Path

When the instance structure of a movie gets very complicated, composing refer-
ences to movie clips and main movies can be laborious. We may not always recall
the exact hierarchy of a series of clips, and, hence, may end up frequently select-
ing and editing clips in the authoring tool just to determine their nested structure.
The ActionScript editor provides an Insert Target Path tool (shown in Figure 13-6)
which lets us generate a clip reference visually, relieving the burden of creating it
manually.

To use Insert Target Path, follow these steps:

1. Position the cursor in your code where you want a clip reference to be
inserted.

2. Click the Insert Target Path button, shown in Figure 13-6.

3. In the Insert Target Path dialog box, select the clip to which you want to refer.

4. Choose whether to insert an absolute reference, which begins with _root, or a
relative reference, which expresses the reference to the target clip in relation
to the clip that contains your code.

5. If you are exporting to Flash 4 format, choose the Slashes Notation button for
Flash 4 compatibility. (The Dot Notation button, selected by default, com-
poses references that won’t work in Flash 4). See Table 2-1.

The Insert Target Path tool cannot generate references that ascend a hierarchy of
clips. That is, the tool cannot be used to refer to a clip that contains the current
clip (unless you want to begin the path from _root and proceed downward). To

Figure 13-6. The Insert Target Path button

Insert Target Path button

,ch13.16891 Page 306 Monday, April 16, 2001 1:53 PM

Referring to Instances and Main Movies 307

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

create references that ascend the clip hierarchy, we must manually type the appro-
priate references in our code using the _parent property.

Dynamic References to Clip Objects

Normally, we know the name of the specific instance or movie we are manipulat-
ing, but there are times when we’d like to control a clip whose name we don’t
know. We may, for example, want to scale down a whole group of clips using a
loop or create a button that refers to a different clip each time it is clicked. To
handle these situations, we must create our clip references dynamically at runtime.

Using the array-element access operator

As we saw in Chapter 5, Operators, and Chapter 12, Objects and Classes, the proper-
ties of an object may be retrieved via the dot operator or through the array-element
access operator, []. For example, the following two statements are equivalent:

myObject.myProperty = 10;
myObject["myProperty"] = 10;

The array-element access operator has one important feature that the dot operator
does not; it lets us (indeed requires us to) refer to a property using a string expres-
sion rather than an identifier. For example, here’s a string concatenation expres-
sion that acts as a valid reference to the property myProperty:

myObject["myProp" + "erty"];

We can apply the same technique to create our instance and movie references
dynamically. We already learned that clip instances are stored as properties of
their parent clips. Earlier, we used the dot operator to refer to those instance prop-
erties. For example, from the main timeline we can refer to clipB, which is nested
inside of another instance, clipA, as follows:

clipA.clipB; // Refer to clipB inside clipA
clipA.clipB.stop(); // Invoke a method on clipB

Because instances are properties, we can also legitimately refer to them with the []
operator, as in:

clipA["clipB"]; // Refer to clipB inside clipA
clipA["clipB"].stop(); // Invoke a method on clipB

Notice that when we use the [] operator to refer to clipB, we provide the name
of clipB as a string, not an identifier. That string reference may be any valid
string-yielding expression. For example, here’s a reference to clipB that involves
a string concatenation:

var clipCount = "B";
clipA["clip" + clipCount]; // Refer to clipB inside clipA
clipA["clip" + clipCount].stop(); // Invoke a method on clipB

,ch13.16891 Page 307 Monday, April 16, 2001 1:53 PM

308 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

We can create clip references dynamically to refer to a series of sequentially
named clips:

// Stop clip1, clip2, clip3, and clip4
for (var i = 1; i <= 4; i++) {
 _root["clip" + i].stop();
}

Now that’s powerful!

Storing references to clips in data containers

I started this chapter by saying that movie clips are effectively data objects in
ActionScript. We can store a reference to a movie clip instance in a variable, an
array element, or an object property.

Recall our earlier example of a nested instance hierarchy (clipC nested inside
clipB nested inside clipA) placed on the main timeline of a document. If we
store those various clips in data containers, we can control them dynamically using
the containers instead of explicit references to the clips. Example 13-1, which
shows code that would be placed on a frame in the main timeline, uses data con-
tainers to store and control instances.

By storing clip references in data containers, we can manipulate the clips (such as
playing, rotating, or stopping them) without knowing or affecting the document’s
clip hierarchy.

Using for-in to access movie clips

In Chapter 8, we learned how to enumerate an object’s properties using a for-in
loop. Recall that a for-in loop’s iterator variable automatically cycles through all
the properties of the object, so that the loop is executed once for each property:

for (var prop in someObject) {
 trace("the value of someObject." + prop + " is " + someObject[prop]);
}

Example 13-1. Storing Clip References in Variables and Arrays

var x = clipA.clipB; // Store a reference to clipB in the variable x
x.play(); // Play clipB

// Now let's store our clips in the elements of an array
var myClips = [clipA, clipA.clipB, clipA.clipB.clipC];
myClips[0].play(); // Play clipA
myClips[1]._x = 200; // Place clipB 200 pixels from the Stage's left edge

// Stop all the clips in our array using a loop
for (var i = 0; i < myClips.length; i++) {
 myClips[i].stop();
}

,ch13.16891 Page 308 Monday, April 16, 2001 1:53 PM

Referring to Instances and Main Movies 309

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Example 13-2 shows how to use a for-in loop to enumerate all the clips that reside
on a given timeline.

The for-in loop gives us enormously convenient access to the clips contained by a
specific clip instance or main movie. Using for-in we can control any clip on any
timeline, whether we know the clip’s name or not and whether the clip was cre-
ated manually or programmatically.

Example 13-3 shows a recursive version of the previous example. It finds all the
clip instances on a timeline, plus the clip instances on all nested timelines.

For more information on function recursion, see “Recursive Functions” in
Chapter 9, Functions.

The _name property

As we learned earlier in “Instance Names,” every instance’s name is stored as a
string in the built-in property _name. We can use that property, as we saw in
Example 13-2, to determine the name of the current clip or the name of some
other clip in an instance hierarchy:

Example 13-2. Finding Movie Clips on a Timeline

for (var property in myClip) {
 // Check if the current property of myClip is a movie clip
 if (typeof myClip[property] == "movieclip") {
 trace("Found instance: " + myClip[property]._name);

 // Now do something to the clip
 myClip[property]._x = 300;
 myClip[property].play();
 }
}

Example 13-3. Recursively Finding All Movie Clips on a Timeline

function findClips (myClip, indentSpaces) {
 // Use spaces to indent the child clips on each successive tier
 var indent = " ";
 for (var i = 0; i < indentSpaces; i++) {
 indent += " ";
 }
 for (var property in myClip) {
 // Check if the current property of myClip is a movie clip
 if (typeof myClip[property] == "movieclip") {
 trace(indent + myClip[property]._name);
 // Check if this clip is parent to any other clips
 findClips(myClip[property], indentSpaces + 4);
 }
 }
}
findClips (_root, 0); // Find all clip instances descended from main timeline

,ch13.16891 Page 309 Monday, April 16, 2001 1:53 PM

310 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

_name; // The current instance's name
_parent._name // The name of the clip that contains the current clip

The _name property comes in handy when we want to perform conditional opera-
tions on clips according to their identities. For example, here we duplicate the
seedClip clip when it loads:

onClipEvent (load) {
 if (_name == "seedClip") {
 this.duplicateMovieClip("clipCopy", 0);
 }
}

By checking explicitly for the seedClip name, we prevent infinite recursion—
without our conditional statement, the load handler of each duplicated clip would
cause the clip to duplicate itself.

The _target property

Every movie clip instance has a built-in _target property, which is a string speci-
fying the clip’s absolute path using the deprecated Flash 4 “slash” notation. For
example, if clipB is placed inside clipA, and clipA is placed on the main time-
line, the _target property of those clips is as follows:

_root._target // Contains: "/"
_root.clipA._target // Contains: "/clipA"
_root.clipA.clipB._target // Contains: "/clipA/clipB"

The targetPath() function

The targetPath() function returns a string that contains the clip’s absolute refer-
ence path, expressed using dot notation. The targetPath() function is the Flash 5–
syntax equivalent of _target. It takes the form:

targetPath(movieClip)

where movieClip is the identifier of the clip whose absolute reference we wish to
retrieve. Here are some examples, using our now familiar example hierarchy:

targetPath(_root); // Contains: "_level0"
targetPath(_root.clipA); // Contains: "_level0.clipA"
targetPath(_root.clipA.clipB); // Contains: "_level0.clipA.clipB"

The targetPath() function gives us the complete path to a clip, whereas the _name
property gives us only the name of the clip. (This is analogous to having a com-
plete file path versus just the filename.) So, we can use targetPath() to compose
code that controls clips based not only on their name but also on their location.
For example, we might create a generic navigational button that, by examining its
targetPath(), sets its own color to match the section of content within which it
resides. See the example under “Selection.setSelection() Method” in Part III for a
demonstration of targetPath() in action.

,ch13.16891 Page 310 Monday, April 16, 2001 1:53 PM

Removing Clip Instances and Main Movies 311

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Whither Tell Target?

In Flash 4, Tell Target was our main tool for referring to movie clips. Tell Target,
bless its soul, was an unwieldy tool and is rendered obsolete by the much more
elegant object model introduced in Flash 5. The Tell Target function has been dep-
recated (i.e., retired from recommended use). Although we may still use the
tellTarget() function to code in a Flash 4 manner, tellTarget() will likely disappear
in the future.

Consider the following code, which uses Tell Target to play an instance named
closingSequence:

Begin Tell Target ("closingSequence")
 Play
End Tell Target

As of Flash 5, we simply invoke the much more convenient and readable play()
method on the closingSequence instance:

closingSequence.play();

Tell Target could also perform multiple operations on an instance within a code
block, like so:

Begin Tell Target ("ball")
 (Set Property: ("ball", x Scale) = "5")
 Play
End Tell Target

As of Flash 5, the with() statement, described in Chapter 6, Statements, is the pre-
ferred way to achieve similar results:

with (ball) {
 _xscale = 5;
 play();
}

See Appendix C, Backward Compatibility, for more details on deprecated Flash 4
ActionScript and the preferred equivalents in Flash 5.

Removing Clip Instances
and Main Movies
We’ve learned to create and refer to movie clips; now let’s see how to turn them
into so many recycled electrons (in other words, blow ’em away).

The manner in which we created an instance or a movie determines the tech-
nique we use to remove that instance or movie later. We can explicitly remove
movies and instances using unloadMovie() and removeMovieClip(). Additionally,

,ch13.16891 Page 311 Monday, April 16, 2001 1:53 PM

312 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

we may evict a clip implicitly by loading, attaching, or duplicating a new clip in its
stead. Let’s look at these techniques individually.

Using unloadMovie() with Instances and Levels

The built-in unloadMovie() function can remove any clip instance or main
movie—both those created manually and those created via loadMovie(),
duplicateMovieClip(), and attachMovie(). It can be invoked both as a global func-
tion and as a method:

unloadMovie(clipOrLevel); // Global function
clipOrLevel.unloadMovie(); // Method

In global function form, clipOrLevel is a string indicating the path to the clip or
level to unload. And due to automatic value conversion, clipOrLevel may also
be a movie clip reference (movie clips are converted to paths when used as
strings). In method form, clipOrLevel must be a reference to a movie clip object.
The exact behavior of unloadMovie() varies according to whether it is used on a
level or an instance.

Using unloadMovie() with levels

When applied to a level in the document stack (e.g., _level0, _level1, _level2),
unloadMovie() completely removes the target level and the movie that the level
contains. Subsequent references to the level yield undefined. Removing document
levels is the most common use of the unloadMovie() function:

unloadMovie("_level1");
_level1.unloadMovie();

Using unloadMovie() with instances

When applied to an instance (whether manually or programmatically created),
unloadMovie() removes the contents of the clip, but it does not remove the clip
itself ! The timeline and canvas of the clip are removed, but an empty shell remains
on stage. That shell can be referenced until the instance is permanently removed
via removeMovieClip() (or until the span of frames on which the instance resides
ends). Furthermore, any clip event handlers on the shell remain active.

This partial deletion of instances presents an interesting possibility; it lets us main-
tain a generic container clip whose contents can be repeatedly changed via
loadMovie() and unloadMovie(). For example, we may quite legitimately invoke
the following function series on an instance called clipA (though in a real appli-
cation, these statements would include the appropriate preloader code):

clipA.loadMovie("section1.swf"); // Load a document into clipA
clipA.unloadMovie(); // Unload the document, leaving clipA intact
clipA.loadMovie("section2.swf"); // Load another document into clipA

,ch13.16891 Page 312 Monday, April 16, 2001 1:53 PM

Removing Clip Instances and Main Movies 313

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

One note of caution with this approach. When used on an instance, unloadMovie()
removes all custom properties of the clip contained by the instance. Physical prop-
erties, such as _x and _alpha persist, but custom variables and functions are lost.

If you use the global function form of unloadMovie() with a non-
existent clip or level instance as its argument, the clip from which
you invoked the unloadMovie() function will, itself, unload.

For example, if _level1 is undefined, and we issue the following code from the
main timeline of _level0, then _level0 will unload:

unloadMovie(_level1);

Yes, there’s some logic to this behavior, but we’ll cover that later under “Method
versus global function overlap issues.” You can avoid the problem by using a
string when specifying the clipOrLevel argument of unloadMovie() or by check-
ing explicitly that clipOrLevel exists before unloading it. Here’s an example of
each approach:

unloadMovie("_level1"); // clipOrLevel specified as a string
if (_level1) { // Explicit check to make sure level exists
 unloadMovie(_level1);
}

Using removeMovieClip() to Delete Instances

To delete attached and duplicated instances from the Player, we can use
removeMovieClip(). Note that removeMovieClip() works on duplicated or attached
instances only. It cannot delete a manually created instance or a main movie. Like
unloadMovie(), removeMovieClip() may be used in both method and global func-
tion form (though the syntax is different, the effect is the same):

removeMovieClip(clip) // Global function
clip.removeMovieClip() // Method

In global function form, clip is a string indicating the path to the clip to remove.
Due to automatic value conversion, clip may also be a movie clip reference
(movie clips are converted to paths when used as strings). In method form, clip
must be a reference to a movie clip object.

Unlike unloadMovie(), deleting an instance via removeMovieClip() completely
obliterates the entire clip object, leaving no shell or trace of the clip and its prop-
erties. When we execute clip.removeMovieClip(), future references to clip
yield undefined.

,ch13.16891 Page 313 Monday, April 16, 2001 1:53 PM

314 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Removing Manually Created Instances Manually

Clip instances created manually in the Flash authoring tool also have a limited life
span—they are removed when the playhead enters a keyframe that does not
include them. Manually created movie clips, hence, live in fear of the almighty
blank keyframe.

Remember that when a movie clip disappears from the timeline, it ceases to exist as
a data object. All variables, functions, methods, and properties that may have been
defined inside it are lost. Therefore, if we want a clip’s information or functions to
persist, we should be careful about removing the clip manually and should ensure
that the span of frames on which the clip resides extends to the point where we
need that clip’s information. (In fact, to avoid this worry entirely, we should attach
most permanent code to a frame in the main movie timeline.) To hide a clip while
it’s present on the timeline, simply position the clip outside the visible area of the
Stage, and set the clip’s _visible property to false. Setting a clip’s _x property
to a very large positive number or very small negative number should also suffice
to hide it from the user’s view without removing it from memory.

Built-in Movie Clip Properties
Unlike generic objects of the Object class, which have few built-in properties, each
movie clip comes equipped with a slew of built-in properties. These properties
describe, and can be used to modify, the clip’s physical features. They are funda-
mental tools in the ActionScript programmer’s toolkit.

All built-in movie clip property names begin with an underscore, which sets them
apart from user-defined or custom properties. Built-in properties take the format:

_property

Built-in property names should be written in lowercase. However, because identi-
fiers are case insensitive in ActionScript, it is possible—though not good form—to
capitalize property names.

We’re not going to go into heavy descriptions of the built-in properties right now;
that information is listed in Part III. However, to get us thinking about properties
and what they offer, Table 13-1 provides a list of the built-in movie clip properties
and basic descriptions of their functions.

Table 13-1. The Built-in Movie Clip Properties

Property Name Property Description

_alpha Transparency level

_currentframe Position of the playhead

,ch13.16891 Page 314 Monday, April 16, 2001 1:53 PM

Movie Clip Methods 315

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

There’s no direct color property attached to instances or main movies. Instead of
controlling color through a property, we must use the Color class to create an
object that is used to control the color of a clip. The methods of a Color object let
us set or examine the RGB values and transformations of a particular clip. To learn
the specific details, see the “Color Class” in Part III.

Movie Clip Methods
In Chapter 12, we learned about a special type of property called a method, which
is a function attached to an object. Methods are most commonly used to manipu-
late, interact with, or control the objects to which they are attached. To control
movie clips in various programmatic ways, we may use one of the built-in movie
clip methods. We may also define our own movie clip methods in an individual
instance or in the Library symbol of a movie clip.

_droptarget Path to the clip or movie on which a dragged clip was dropped

_framesloaded Number of frames downloaded

_height Physical height, in pixels (of instance, not original symbol)

_name Clip’s identifier, returned as a string

_parent Object reference to the timeline containing this clip

_rotation Angle of rotation (in degrees)

_target Full path to the clip, in slash notation

_totalframes Number of frames in the timeline

_url Network location of .swf

_visible Boolean indicating whether movie clip is displayed

_width Physical width, in pixels (of instance, not original symbol)

_x Horizontal position, in pixels, from the left of the Stage

_xmouse Horizontal location of the mouse pointer in the clip’s coordinate
space

_xscale Horizontal size, as a percentage of the original symbol (or main
timeline for movies)

_y Vertical position, in pixels, from the top of the Stage

_ymouse Vertical location of the mouse pointer in the clip’s coordinate
space

_yscale Vertical size, as a percentage of the original symbol (or main time-
line for movies)

Table 13-1. The Built-in Movie Clip Properties (continued)

Property Name Property Description

,ch13.16891 Page 315 Monday, April 16, 2001 1:53 PM

316 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

Creating Movie Clip Methods

To add a new method to a movie clip, we define a function on the clip’s timeline
(or in one of the clip’s event handlers) or we assign a function to a property of the
clip. For example:

// Create a method by defining a function on the timeline of a clip
function halfSpin() {
 _rotation += 180;
}
// Create a method by assigning a function literal to a property of a clip
myClip.coords = function() { return [_x, _y]; };
// This method applies a custom transformation to a clip
myClip.myTransform = function () {
 _rotation += 10;
 _xscale -= 25;
 _yscale -= 25;
 _alpha -= 25;
}

Invoking Movie Clip Methods

Invoking a method on a movie clip works exactly like invoking a method on any
object. We supply the name of the clip and the name of the method, as follows:

myClip.methodName();

If the method requires arguments, we pass them along during invocation:

_root.square(5); // Provide 5 as an argument to the square() method

As we learned earlier, when we’re working on the timeline of a clip or in a clip’s
event handler, we may invoke most methods on the current clip directly, without
specifying an instance identifier:

square(10); // Invoke the custom square() method of the current clip
play(); // Invoke the built-in play() method of the current clip

But some built-in methods require an instance identifier; see “Method versus glo-
bal function overlap issues.”

Built-in Movie Clip Methods

Recall that the generic Object class equips all its member objects with the built-in
methods toString() and valueOf(). Recall similarly that other classes define built-in
methods that can be used by their member objects: Date objects have a getHours()
method, Color objects have setRGB(), Array objects have push() and pop(), and so
on. Movie clips are no different. They come equipped with a series of built-in
methods that we use to control movie clips’ appearance and behavior, to check

,ch13.16891 Page 316 Monday, April 16, 2001 1:53 PM

Movie Clip Methods 317

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

their characteristics, and even to create new movie clips. The movie clip methods
are one of the central features of ActionScript. Table 13-2 gives an overview of the
movie clip methods that are covered in depth in Part III.

Method versus global function overlap issues

As we’ve mentioned several times during this chapter, some movie clip methods
have the same name as equivalent global functions. You can see this for yourself
in the Flash authoring tool. Open the Actions panel, make sure you’re in Expert
Mode, and then take a look in the Actions folder. You’ll see a long list of Actions

Table 13-2. The Built-in Movie Clip Methods

Method Name Method Description

attachMovie() Creates a new instance

duplicateMovieClip() Creates a copy of an instance

getBounds() Describes the visual region occupied by the clip

getBytesLoaded() Returns the number of downloaded bytes of an instance or a
movie

getBytesTotal() Returns the physical byte size of an instance or a movie

getURL() Loads an external document (usually an .html file) into the
browser

globalToLocal() Converts main Stage coordinates to clip coordinates

gotoAndPlay() Moves the playhead to a new frame and plays the movie

gotoAndStop() Moves the playhead to a new frame and halts it there

hitTest() Indicates whether a point is within a clip

loadMovie() Brings an external .swf file into the Player

loadVariables() Brings external variables into a clip or movie

localToGlobal() Converts clip coordinates to main Stage coordinates

nextFrame() Moves the playhead ahead one frame

play() Plays the clip

prevFrame() Moves the playhead back one frame

removeMovieClip() Deletes a duplicated or attached instance

startDrag() Causes the instance or movie to physically follow the mouse
pointer around the Stage

stop() Halts the playback of the instance or movie

stopDrag() Ends any drag operation currently in progress

swapDepths() Alters the layering of an instance in an instance stack

unloadMovie() Removes an instance or main movie from a document level or
host clip

valueOf() A string representing the path to the instance in absolute terms,
using dot notation

,ch13.16891 Page 317 Monday, April 16, 2001 1:53 PM

318 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

including gotoAndPlay(), gotoAndStop(), nextFrame(), and unloadMovie(). Those
Actions are also available as movie clip methods. The duplication is not purely a
matter of categorization; the Actions are global functions, fully distinct from the
corresponding movie clip methods.

So, when we execute:

myClip.gotoAndPlay(5);

we’re accessing the method named gotoAndPlay(). But when we execute:

gotoAndPlay(5);

we’re accessing the global function called gotoAndPlay(). These two commands
have the same name, but they are not the same thing. The gotoAndPlay() global
function operates on the current instance or movie. The gotoAndPlay() method
operates on the clip object through which it is invoked. Most of the time, the sub-
tle difference is of no consequence. But for some overlapping method/function
pairs, the difference is potentially quite vexing.

Some global functions require a parameter called target that specifies the clip on
which the function should operate. This target parameter is not required by the
comparable method versions because the methods automatically operate on the
clips through which they are invoked. For example, unloadMovie() in its method
form works like this:

myClip.unloadMovie();

As a method, unloadMovie() is invoked without parameters and automatically
affects myClip. But in its global function form, unloadMovie() works like this:

unloadMovie(target);

The global function requires target as a parameter that specifies which movie to
unload. Why should this be a problem? Well, the first reason is that we may mis-
takenly expect to be able to unload the current document by using the global ver-
sion of unloadMovie() without any parameters, as we’d use gotoAndPlay()
without parameters:

unloadMovie();

This format does not unload the current clip. It causes a “Wrong number of
parameters” error. The second reason that target parameters in global functions
can cause problems is a little more complex and can be quite a pain to track
down if you’re not expecting it. To supply a target clip to a global function that
requires a target parameter, we may use either a string, which expresses the
path to the clip we wish to affect, or a clip reference. For example:

unloadMovie(_level1); // Target clip is a reference
unloadMovie("_level1"); // Target clip is a string

,ch13.16891 Page 318 Monday, April 16, 2001 1:53 PM

Movie Clip Methods 319

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

We may use a reference simply because references to clip objects are converted to
movie clip paths when used in a string context. Simple enough, but if the target
parameter resolves to an empty string or an undefined value, the function oper-
ates on the current timeline ! For example:

unloadMovie(x); // If x doesn't exist, x yields undefined, so
 // the function operates on the current timeline

unloadMovie(""); // The target is the empty string, so the function operates
 // on the current timeline

This can cause some quite unexpected results. Consider what happens if we refer
to a level that doesn’t exist:

unloadMovie(_level1);

If _level1 is empty, the interpreter resolves the reference as though it were an
undeclared variable. This yields undefined, so the function operates on the cur-
rent timeline, not _level1! So, how do we accommodate this behavior? There are
a few options. We may check for the existence of our target before executing a
function on it:

if (_level1) {
 unloadMovie(_level1);
}

We may choose to always use a string to indicate the path to our target. If the path
specified in our string does not resolve to a real clip, the function fails silently:

unloadMovie("_level1");

In some cases, we may use the equivalent numeric function for our operation:

unloadMovieNum(1);

Or, we may choose to avoid the issue altogether by always using methods:

_level1.unloadMovie();

For reference, here are the troublemakers (the Flash 5 ActionScript global func-
tions that take target parameters):

duplicateMovieClip()
loadMovie()
loadVariables()
print()
printAsBitmap()
removeMovieClip()
startDrag()
unloadMovie()

,ch13.16891 Page 319 Monday, April 16, 2001 1:53 PM

320 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

If you’re experiencing unexplained problems in a movie, you may want to check
that list to see if you’re misusing a global function. When passing a clip reference
as a target parameter, be sure to double-check your syntax.

Applied Movie Clip Examples
We’ve now learned the fundamentals of movie clip programming. Let’s put our
knowledge to use by creating two very different applications, both of which exem-
plify the typical role of movie clips as basic content containers.

Building a Clock with Clips

In this chapter we learned how to create movie clips with attachMovie() and how
to set movie clip properties with the dot operator. With these relatively simple
tools and a little help from the Date and Color classes, we have everything we
need to make a clock with functional hour, minute, and second hands.

First, we’ll make the face and hands of the clock with the following steps (notice
that we don’t place the parts of our clock on the main Stage—our clock will be
generated entirely through ActionScript):

1. Start a new Flash movie.

2. Create a movie clip symbol named clockFace that contains a 100-pixel-wide
black circle shape.

3. Create a movie clip symbol named hand that contains a 50-pixel-long, vertical
red line.

4. Select the line in hand, then choose Window ➝ Panels ➝ Info.

5. Position the bottom of the line at the center of the clip by setting the line’s x-
coordinate to 0 and its y-coordinate to –50.

Now we have to export our clockFace and hand symbols so that instances of
them can be attached dynamically to our movie:

1. In the Library, select the clockFace clip, then select Options ➝ Linkage. The
Symbol Linkage Properties dialog box appears.

2. Select Export This Symbol.

3. In the Identifier box, type clockFace and then click OK.

4. Repeat steps 1 through 3 to export the hand clip, giving it the identifier hand.

,ch13.16891 Page 320 Monday, April 16, 2001 1:53 PM

Applied Movie Clip Examples 321

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The face and hands of our clock are complete and ready to be attached to our
movie. Now let’s write the script that places the clock assets on stage and posi-
tions them with each passing second:

1. Add the script shown in Example 13-4 to frame 1 of Layer 1 of the main
timeline.

2. Rename Layer 1 to scripts.

Skim Example 13-4 in its entirety first, then we’ll dissect it.

That’s a lot of code, so let’s review it.

Example 13-4. An Analog Clock

// Create clock face and hands
attachMovie("clockFace", "clockFace", 0);
attachMovie("hand", "secondHand", 3);
attachMovie("hand", "minuteHand", 2);
attachMovie("hand", "hourHand", 1);

// Position and size the clock face
clockFace._x = 275;
clockFace._y = 200;
clockFace._height = 150;
clockFace._width = 150;

// Position, size, and color the clock hands
secondHand._x = clockFace._x;
secondHand._y = clockFace._y;
secondHand._height = clockFace._height / 2.2;
secondHandColor = new Color(secondHand);
secondHandColor.setRGB(0xFFFFFF);
minuteHand._x = clockFace._x;
minuteHand._y = clockFace._y;
minuteHand._height = clockFace._height / 2.5;
hourHand._x = clockFace._x;
hourHand._y = clockFace._y;
hourHand._height = clockFace._height / 3.5;

// Update the rotation of hands with each passing frame
function updateClock() {
 var now = new Date();
 var dayPercent = (now.getHours() > 12 ?
 now.getHours() - 12 : now.getHours()) / 12;
 var hourPercent = now.getMinutes()/60;
 var minutePercent = now.getSeconds()/60;
 hourHand._rotation = 360 * dayPercent + hourPercent * (360 / 24);
 minuteHand._rotation = 360 * hourPercent;
 secondHand._rotation = 360 * minutePercent;
}

,ch13.16891 Page 321 Monday, April 16, 2001 1:53 PM

322 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

We attach the clockFace clip first and assign it a depth of 0 (we want it to appear
behind our clock’s hands):

attachMovie("clockFace", "clockFace", 0);

Next we attach three instances of the hand symbol, assigning them the names
secondHand, minuteHand, hourHand. Each hand resides on its own layer in the
programmatically generated clip stack above the main timeline. The secondHand
(depth 3) sits on top of the minuteHand (depth 2), which sits on top of the
hourHand (depth 1):

attachMovie("hand", "secondHand", 3);
attachMovie("hand", "minuteHand", 2);
attachMovie("hand", "hourHand", 1);

At this point our code would place the clock in the top-left corner of the Stage.
Next, we move the clockFace clip to the center of the Stage and make it larger
using the _height and _width properties:

clockFace._x = 275; // Set the horizontal location
clockFace._y = 200; // Set the vertical location
clockFace._height = 150; // Set the height
clockFace._width = 150; // Set the width

Then we move the secondHand clip onto the clock and make it almost as long as
the radius of the clockFace clip:

// Place the secondHand on top of the clockFace
secondHand._X = clockFace._x;
secondHand._y = clockFace._y;
// Set the secondHand's size
secondHand._height = clockFace._height / 2.2;

Remember that the line in the hand symbol is red, so all our hand instances thus
far are red. To make our secondHand clip stand out, we color it white using the
Color class. Note the use of the hexadecimal color value 0xFFFFFF (see the “Color
Class” in Part III for more information on manipulating color):

// Create a new Color object to control secondHand
secondHandColor = new Color(secondHand);
// Assign secondHand the color white
secondHandColor.setRGB(0xFFFFFF);

Next we set the position and size of the minuteHand and hourHand, just as we
did for the secondHand:

// Place the minuteHand on top of the clockFace
minuteHand._x = clockFace._x;
minuteHand._y = clockFace._y;
// Make the minuteHand shorter than the secondHand
minuteHand._height = clockFace._height / 2.5;

,ch13.16891 Page 322 Monday, April 16, 2001 1:53 PM

Applied Movie Clip Examples 323

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

// Place the hourHand on top of the clockFace
hourHand._x = clockFace._x;
hourHand._y = clockFace._y;
// Make the hourHand the shortest of all
hourHand._height = clockFace._height / 3.5;

Now we have to set the rotation of our hands on the clock according to the cur-
rent time. However, we don’t just want to set the rotation once. We want to set it
repetitively so that our clock animates as time passes. Therefore, we put our rota-
tion code in a function called updateClock(), which we’ll call repeatedly:

function updateClock() {
 // Store the current time in now
 var now = new Date();
 // getHours() works on a 24-hour clock. If the current hour is greater
 // than 12, we subtract 12 to convert to a regular 12-hour clock.
 var dayPercent = (now.getHours() > 12 ?
 now.getHours() - 12 : now.getHours()) / 12;
 // Determine how many minutes of the current hour have passed, as a percentage
 var hourPercent = now.getMinutes()/60;
 // Determine how many seconds of the current minute have passed, as a percentage
 var minutePercent = now.getSeconds()/60;
 // Rotate the hands by the appropriate amount around the clock
 hourHand._rotation = 360 * dayPercent + hourPercent * (360 / 24);
 minuteHand._rotation = 360 * hourPercent;
 secondHand._rotation = 360 * minutePercent;
}

The first task of updateClock() is to retrieve and store the current time. This is
done by creating an instance of the Date class and placing it in the local variable
now. Next we determine, as a percentage, how far around the clock each hand
should be placed—much like determining where to slice a pie. The current hour
always represents some portion of 12, while the current minute and second always
represent some portion of 60. We assign the _rotation of each hand based on
those percentages. For the hourHand, we reflect not only the percent of the day
but also the percent of the current hour.

Our clock is essentially finished. All that’s left to do is call the updateClock() func-
tion with each passing frame. Here’s how:

1. Add two keyframes to the scripts layer.

2. On frame 2, add the following code: updateClock();

3. On frame 3, add the following code: gotoAndPlay(2);

Test the movie and see if your clock works. If it doesn’t, compare it to the sample
clock .fla file provided at the online Code Depot or check your code against
Example 13-4. Think of ways to expand on the clock application: Can you con-
vert the main timeline loop (between frames 2 and 3) to a clip event loop? Can

,ch13.16891 Page 323 Monday, April 16, 2001 1:53 PM

324 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

you make the clock more portable by turning it into a Smart Clip? How about
dynamically adding minute and hour markings on the clockFace?

The Last Quiz
Here’s one final version of the multiple-choice quiz we started way back in
Chapter 1, A Gentle Introduction for Non-Programmers. This updated version of
the quiz dynamically generates all of the quiz’s questions and answers using movie
clips, so our quiz is infinitely scalable and highly configurable. In fact, we’re not
far off from making the entire quiz a Smart Clip that could be customized by non-
programmers.

The code for the quiz is shown in Example 13-5 and available from the online
Code Depot. Because the quiz is now completely dynamically generated, 99% of
the code fits entirely on one frame; we no longer need to fill a timeline with ques-
tions. (All we’re missing is a preloader to ensure smooth playback over a network.)
Note that we’ve used #include to import a block of code from an external text
file. For more information on #include, see Part III, and see “Externalizing Action-
Script Code” in Chapter 16. As an exercise, try adding new questions to the quiz by
creating new objects and placing them in the questions array.

Though the code for the final quiz is relatively short, it’s packed full of important
techniques. With the exception of #include, we’ve seen all of them in isolation
before, but this extended real-world example shows how they can all fit together.
Study the comments carefully—when you understand this version of the quiz in its
entirety you’ll be well-equipped to create advanced applications with ActionScript.

A longer explanation of the code in this quiz is available at:

http://www.moock.org/webdesign/lectures/ff2001sfWorkshop

Example 13-5. The Multiple-Choice Quiz, One Last Time

// CODE ON FRAME 1 OF THE MAIN TIMELINE
// Stop the movie
stop();

// Init main timeline variables
var displayTotal; // Text field for user's final score
var totalCorrect = 0; // Number of questions answered correctly
var userAnswers = new Array(); // Array containing the user's guesses
var currentQuestion = 0; // Number of the question the user is on

// Import the source file containing our array of question objects
#include "questionsArray.as" // See explanation later in this example

// Begin the quiz
makeQuestion(currentQuestion);

,ch13.16891 Page 324 Monday, April 16, 2001 1:53 PM

The Last Quiz 325

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

// The Question() constructor
function Question (correctAnswer, questionText, answers) {
 this.correctAnswer = correctAnswer;
 this.questionText = questionText;
 this.answers = answers;
}

// Function to render each question to the screen
function makeQuestion (currentQuestion) {
 // Clear the Stage of the last question
 questionClip.removeMovieClip();

 // Create and place the main question clip
 attachMovie("questionTemplate", "questionClip", 0);
 questionClip._x = 277;
 questionClip._y = 205;
 questionClip.qNum = "question\n " + (currentQuestion + 1);
 questionClip.qText = questionsArray[currentQuestion].questionText;

 // Create the individual answer clips in the question clip
 for (var i = 0; i < questionsArray[currentQuestion].answers.length; i++) {
 // Attach our linked answerTemplate clip from the Library;
 // It contains a generalized button and a text field for the question
 questionClip.attachMovie("answerTemplate", "answer" + i, i);
 // Place this answer clip in line below the question
 questionClip["answer" + i]._y += 70 + (i * 15);
 questionClip["answer" + i]._x -= 100;
 // Set the text field in the answer clip to the appropriate element of this
 // question's answer array
 questionClip["answer" + i].answerText =
 questionsArray[currentQuestion].answers[i];
 }
}

// Function to register the user's answers
function answer (choice) {
 userAnswers.push(choice);
 if (currentQuestion + 1 == questionsArray.length) {
 questionClip.removeMovieClip();
 gotoAndStop ("quizEnd");
 } else {
 makeQuestion(++currentQuestion);
 }
}

// Function to tally the user's score
function gradeUser() {
 // Count how many questions the user answered correctly
 for (var i = 0; i < questionsArray.length; i++) {
 if (userAnswers[i] == questionsArray[i].correctAnswer) {
 totalCorrect++;
 }
 }

Example 13-5. The Multiple-Choice Quiz, One Last Time (continued)

,ch13.16891 Page 325 Monday, April 16, 2001 1:53 PM

326 Chapter 13: Movie Clips

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

The contents of the questionsArray.as file are as shown here:

// CODE IN THE questionsarray.as FILE
// ---
// Contains an array of question objects that
// populate the questions and answers of a multiple-
// choice quiz. Compose new question objects according
// to the following example.

/************** EXAMPLE QUESTION OBJECT ***************
 // Invoke the Question constructor with three arguments:
 // a zero-relative number giving the correct answer,
 // a string giving the question text, and
 // an array containing the multiple-choice answers
 new Question
 (
 1,
 "question goes here?",
 ["answer 1", "answer 2", "answer 3"]
)
***/
// Remember to place a comma after each object in the array except the last
questionsArray = [new Question (2,
 "Which version of Flash first introduced movie clips?",
 ["version 1", "version 2", "version 3",
 "version 4", "version 5", "version 6"]),

 new Question (2,
 "When was ActionScript formally declared a scripting language?",
 ["version 3", "version 4", "version 5"]),

 new Question (1,
 "Are regular expressions supported by Flash 5 ActionScript?",
 ["yes", "no"]),

 // Show the user's score in an onscreen text field
 displayTotal = totalCorrect + "/" + questionsArray.length;
}

// CODE ON THE DYNAMICALLY GENERATED ANSWER BUTTONS
// Answer clips are generated dynamically and named in the series
// "answer0", "answer1",..."answern". Each answer clip contains a
// button that, when clicked, checks the name of the answer clip it's
// in to determine the user's choice.
on (release) {
 // Trim the prefix "answer" off this clip's name
 choice = _name.slice(6, _name.length);
 _root.answer(choice);
}

// CODE ON THE quizEnd FRAME
gradeUser();

Example 13-5. The Multiple-Choice Quiz, One Last Time (continued)

,ch13.16891 Page 326 Monday, April 16, 2001 1:53 PM

Onward! 327

This is the Title of the Book, eMatter Edition
Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.

 new Question (0,
 "Which sound format offers the best compression?",
 ["mp3","aiff", "wav"]),

 new Question (1,
 "True or False: The post-increment operator (++) returns the
 value of its operand + 1.",
 ["true", "false"]),

 new Question (3,
 "Actionscript is based on...",
 ["Java", "JavaScript", "C++", "ECMA-262", "Perl"])];

Onward!
We’ve come so far that there’s not much more to move on to! Once you under-
stand objects and movie clips thoroughly, you can tackle most ActionScript
projects on your own. But there’s still some interesting ground ahead: the next
chapter teaches “lexical structure” (the finicky details of ActionScript syntax). In
the chapter following that, we’ll consider a variety of advanced topics. Finally, it’s
on to Part II, Applied ActionScript and Part III, Language Reference.

,ch13.16891 Page 327 Monday, April 16, 2001 1:53 PM

