é ,ch03.6283 Page 63 Wednesday, December 4, 2002 12:44 PM

CHAPTER 3
Data and Datatypes

Having worked with variable values in Chapter 2, you’ve already had a casual intro-
duction to data, the information we manipulate in our scripts. In this chapter, we’ll
explore data in more depth, learning how ActionScript defines, categorizes, and
stores data. We’ll also explore how to create and classify data.

Data Versus Information

In the broadest sense, data is anything that can be stored by a computer, from words
and numbers to images, video, and sound. All computer data is stored as a sequence
of 1s and 0s, which you might recognize from high-tech marketing materials:
010101010101010110101011011010101010101010000010101010101011010101010
101010101010101011101010101010101010101010101010111110101010101010101
01010101010101010101010101110
Data is information in its crude state—raw and meaningless. Semantics give informa-
tion meaning. Consider, for example, the number 8008898969. As raw data it isn’t
very meaningful, but when we classify it semantically as the telephone number (800)
889-8969, the data becomes useful information.

This chapter shows how to add meaning to raw computer data so that it becomes
human-comprehensible information.

Retaining Meaning with Datatypes

How do we store information as raw data without losing meaning? By categorizing
our data and defining its datatype, we give it context that defines its meaning.

For example, suppose we have three numbers: 5155534, 5159592, and 4593030. By
categorizing our data—as, say, a phone number, fax number, and parcel tracking
number—the context (and, hence, the meaning) of our data is preserved. When cate-
gorized, each of the otherwise-nondescript seven-digit numbers becomes meaningful.

63

4~ ~4]e

é ,ch03.6283 Page 64 Wednesday, December 4, 2002 12:44 PM

Programming languages use datatypes to provide rudimentary categories for data.
For example, nearly all programming languages define datatypes to store and manip-
ulate text (a.k.a. strings) and numbers. To distinguish between multiple numbers, we
can use well-conceived variable names, such as phoneNumber and faxNumber. In more
complex situations, we can create our own custom data categories with objects and
object classes, as covered in Chapter 12. Before we think about making our own data
categories, let’s see which categories come built into ActionScript.

The ActionScript Datatypes

When programming, we may want to store a product name, a background color, or
the number of stars to be placed in a night sky. We use the following ActionScript
datatypes to store our data:

string
For text sequences such as “hi there”. A string is a series of characters (alphanu-
merics and punctuation).

number
For numbers, such as 351 and 7.5. Numbers are used for counting and for math-
ematical equations.

boolean
For logical decisions. With Boolean data, we can represent or record the status
of some condition or the result of some comparison. Boolean data has only two
legal values: true and false.

null and undefined
For representing an absence of data, ActionScript provides two special data val-
ues: null and undefined. You can think of them as the only permissible values of
the null and undefined datatypes.

array
For lists of one or more pieces of data.

movieclip
For manipulating movie clip instances.
object
For arbitrary built-in or user-defined classes of data.

Every piece of data we store in ActionScript will fall into one of these categories.
Before studying each datatype in Chapter 4, we’ll consider the general issues that
affect our use of all data.

Creating and Categorizing Data

There are two ways to create a new datum with ActionScript, and both methods
require the use of expressions—phrases of code that represent data in scripts.

64 | Chapter3: Dataand Datatypes

- ad

é ,ch03.6283 Page 65 Wednesday, December 4, 2002 12:44 PM

A literal expression (or literal for short) is a series of letters, numbers, and punctua-
tion that is the datum. A data literal is a verbatim description of data in a program’s
source code. This contrasts with a variable, which is merely a container that holds a
datum. Each datatype defines its own rules for the creation of literals. For example,
string literals are enclosed in quotes, whereas numeric literals are not. Here are some
examples of literals:

"loading...please wait" // A string literal

1.51 // A numeric literal
["jane", "jonathan"] // An array literal
{x: 10, y: 15} // An object literal

Note that movie clips cannot be represented by literals but are referred to by instance
names.

We can also generate data programmatically with a complex expression. Complex
expressions are phrases of code with a value that must be calculated or computed,
not taken literally. The calculated value is the datum being represented. For exam-
ple, each of these complex expressions results in a single datum:

1999 + 1 // Yields the numeric datum 2000

"1999" + "1" // Yields the string datum "19991"
"hi " + "ma!" // Yields the string datum "hi ma!"

firstName // Yields the value of the variable firstName
_currentframe // Yields the frame number of the playhead's current position
new Date() // Yields a new Date object with the current date and time

Notice that an individual literal expression, such as 1999 or 1, can be a valid part of a
larger complex expression, as in 1999 + 1.

Whether we use a literal expression or a complex expression to create data, we must
store every datum that we want to use later. The result of the expression "hi" + "ma!"
is lost unless we store it, say, in a variable. For example:

// This datum is fleeting and dies immediately after it's created

"hi " + "ma";

// This datum is stored in a variable and can be

// accessed later via the variable welcomeMessage

var welcomeMessage = "hi " + "mal!";
How do we categorize data into the appropriate type? That is, how do we specify
that a datum is a number, a string, an array, or whatever? In most cases, we don’t
categorize new data ourselves; the ActionScript interpreter automatically assigns or
infers each datum’s type based on a set of internal rules.

Automatic Literal Typing

The interpreter infers a literal datum’s type by examining its syntax, as explained in
the comments in the following code fragment:
"animal" // Quotation marks identify "animal" as a string

1.35 // If it contains only integers and a decimal point,
// it is a number

Creating and Categorizing Data | 65

4~ ~4]e

é ,ch03.6283 Page 66 Wednesday, December 4, 2002 12:44 PM

true // Special keyword true identifies this as a Boolean
null // Special keyword null identifies this as the null type
undefined // Special keyword undefined identifies the undefined type
["hello", 2, true] // Square brackets and values separated by commas

// indicate that this is an array
{x: 234, y: 456} // Curly braces and property name/value pairs separated

// by commas indicate that this is an object

As you can see, using correct syntax with data literals is extremely important. Incor-
rect syntax may cause an error or result in the misinterpretation of a datum’s con-
tent. For example:
animal // Missing quotes--animal is interpreted as a variable,
// not a string of text
"1.35" // Numbers in quotes are treated as strings, not numbers

1. 35 // Space before the 3 causes an error
"animal // Missing closing quotation mark causes an error

Automatic Complex Expression Typing

The interpreter computes an expression’s value in order to determine its datatype.
Consider this example:

pointerX = xmouse;

Because _xmouse stores the location of the mouse pointer as a number, the type of the
expression _xmouse will always be a number; so, the variable pointerX also becomes a
number.

Usually, the datatype that is automatically determined by the interpreter matches
what we expect and want. However, some ambiguous cases require us to under-
stand the rules that the interpreter uses to determine an expression’s datatype (see
Example 2-2 and Example 2-3). Consider the following expression:

"ty g

The operand on the left of the + is a string (“1”), but the operand on the right is a
number (2). The + operator works on both numbers (addition) and strings (concate-
nation). Should the value of the expression "1" + 2 be the number 3 or the string
“12”? To resolve the ambiguity, the interpreter relies on a fixed rule: the plus opera-
tor (+) always favors strings over numbers, so the expression "1" + 2 evaluates to the
string “12”, not the number 3. This rule is arbitrary, but it provides a consistent way
to interpret the code. The rule was chosen with typical uses of the plus operator in
mind: if one of the operands is a string, it’s likely that we want to concatenate the
operands, not add them numerically, as in this case:

trace ("The value of x is: " + x);

Combining disparate types of data or using a datum in a context that does not match
the expected datatype causes ambiguity. This forces the interpreter to perform an
automatic datatype conversion according to arbitrary, but predictable, rules. Let’s

66 | Chapter3: Dataand Datatypes

4~ ~4]e

é ,ch03.6283 Page 67 Wednesday, December 4, 2002 12:44 PM

examine the cases in which automatic conversions will occur and the results of con-
verting a datum from one type to another.

Datatype Conversion

Take a closer look at the example from the previous section. In that example, each
datum—*“1” and 2—belonged to its own datatype; the first was a string and the sec-
ond was a number. We saw that the interpreter joined the two values together to
form the string “12”. Note that the interpreter first had to convert the number 2 into
the string “2”. Only after that automatic conversion was performed could the value
“2” be joined (concatenated) to the string “1”.

Datatype conversion simply means changing the type of a datum. Not all datatype
conversions are automatic; we may also change a datum’s type explicitly in order to
override the default datatype conversion that ActionScript would otherwise perform.
Explicit conversion is known as typecasting, or simply casting.

Automatic Type Conversion

Whenever we use a value in a context that does not match the expected datatype, the
interpreter attempts a conversion. That is, if the interpreter expects data of type A,
and we provide data of type B, the interpreter will attempt to convert our type B data
into type A data. For example, in the following code we use the string “Flash” as the
right-hand operand of the subtraction operator. Since only numbers may be used
with the subtraction operator, the interpreter attempts to convert the string “Flash”
into a number:

999 - "Flash";

Of course, the string “Flash” can’t be successfully converted into a legitimate num-
ber, so it is converted into the special numeric data value NaN (i.e., Not-a-Number).
NaN is a legal value of the number datatype, intended specifically to handle such a sit-
uation. With “Flash” converted to NaN, our expression ends up looking like this to
the interpreter (though we never see this interim step):

999 - NaN;

Both operands of the subtraction operator are now numbers, so the operation can
proceed: 999 - NaN yields the value NaN, which is the final value of our expression.

An expression that yields the numeric value NaN isn’t particularly useful; most con-
versions have more functional results. For example, if a string contains only numeric
characters, it can be converted into a useful number. The expression:

999 - "9"; // The number 999 minus the string "9"
is interpreted as:

999 - 9; // The number 999 minus the number 9

Datatype Conversion | 67

4~ ~4]e

é ,ch03.6283 Page 68 Wednesday, December 4, 2002 12:44 PM

which yields the value 990 when the expression is resolved. Automatic conversion is
most common with the plus operator, the equality operator, the comparison opera-
tors, and in conditional or loop statements. In order to be sure of the result of any
expression that involves automatic conversion, we have to answer three questions:
(a) what is the expected datatype of the current context? (b) what happens when an
unexpected datatype is supplied in that context? and (c) when conversion occurs,
what is the resulting value?

To answer the first and second questions, we need to consult the appropriate topics
elsewhere in this book (e.g., to determine what datatype is expected in a conditional
statement, see Chapter 7).

The next three tables, which list the rules of automatic conversion, answer the third
question, “When conversion occurs, what is the resulting value?” Table 3-1 shows
the results of converting each datatype to a number.

Table 3-1. Converting to a number

Original data Result after conversion

undefined 0

null 0

Boolean 1if the original value is true; 0 if the original value is false

Numeric string Equivalent numeric value if string is composed only of base-10 numbers, whitespace, exponent, deci-
mal point, plus sign, or minus sign (e.g., “-1.485e2")

Other strings Empty strings, nonnumeric strings, including strings starting with “x”, “0x”, or “FF*, convert to NaN

“Infinity” Infinity

“-Infinity” -Infinity

“NaN“ NaN

Array NaN

Object The return value of the object’s value0f() method

Movieclip NaN

Table 3-2 shows the results of converting each datatype to a string.

Table 3-2. Converting to a string

Original data Result after conversion

undefined " (the empty string)

null “null”

Boolean “true” if the original value was true; “false” if the original value was false.
NaN “NaN“

0 0"

Infinity “Infinity”

-Infinity “-Infinity”

68 | Chapter3: Dataand Datatypes

é ,ch03.6283 Page 69 Wednesday, December 4, 2002 12:44 PM

Table 3-2. Converting to a string (continued)

Original data
Other numeric value
Array

Object

Movieclip

Result after conversion
String equivalent of the number. For example, 944 . 345 becomes “944. 345"
A comma-separated list of element values.

The value that results from calling toString() on the object. By default, the toString () method of an
object returns “[object Object]”. The toString() method can be customized to return a more use-
ful result (e.g., toString() of a Date object returns: “SunMay 14 11:38:10 EDT 2000”).

The path to the movie clip instance, given in absolute terms starting with the document level in the
Player. For example, _levelo.ball”.

Table 3-3 shows the results of converting each datatype to a Boolean.

Table 3-3. Converting to a Boolean

Original data
undefined

null

NaN

0

Infinity
-Infinity
Other numeric value

Nonempty string

Empty string ("")
Array
Object

Movieclip

Result after conversion
false

false

false

false

true

true

true

true if the string can be converted to a valid nonzero number, false if not; in ECMA-262, a non-
empty string always converts to true (Flash diverges from the ECMA standard to maintain compati-
bility with Flash 4)

false
true
true

true

Explicit Type Conversion

If the automatic (implicit) type-conversion rules do not suit our purpose, we can
manually (explicitly) change a datum’s type. When we take matters into our own
hands, we must remember that the rules listed in the preceding tables still apply.

Converting to a string with the toString() method

We can invoke the toString()method to convert any datum to a string. For example:

x.toString();

// Get the string value of the variable x.

(523).toString(); // Returns "523". Note that we use parentheses

// so that the "." isn't treated as a decimal point.

Datatype Conversion | 69

%

é ,ch03.6283 Page 70 Wednesday, December 4, 2002 12:44 PM

When we invoke the toString() method on a number, we may also provide a numeric
argument indicating the base of the number system in which we’d like the converted
string to be represented. This provides a handy means of switching between hexa-
decimal, decimal, and octal numbers. For example:

var myColor = 255;
var hexColor = myColor.toString(16); // Sets hexColor to "ff"

Converting to a string with the String() function

The String() function has the same result as the toString() method, but it uses a dif-
ferent grammar:

String(x); // Convert x to a string

String(523); // Convert 523 to the string "523"
Don’t confuse the global String() function with the built-in class constructor of the
same name. Both are described in the Language Reference.

Converting to a string with empty string concatenation

Because the plus operator (+) favors strings in its automatic conversion rules, concat-
enating the empty string ("") with any datum converts that datum to a string.

// Convert x to a string.

x+ "
// Here we check the character position of the number 2 in 523. We first

// concatenate 523 and "", before invoking a String method on the converted value.
trace((523 + "").index0f(2));

Converting to a number with the Number() function

Just as the String() function converts data to the string type, the Number() function
converts its argument to the number type. When conversion to a real number is
impossible or illogical, the Number() function returns a special numeric value as
described in Table 3-1. Here are some examples:

Number (age); // Yields the value of age converted to a number

Number ("29"); // Yields the number 29

Number("sara"); // Yields NaN
Don’t confuse the global Number() function with the built-in class constructor of the
same name. Both are described in the Language Reference.

Because user input in on-screen text fields always belong to the string type, it’s neces-
sary to convert text fields to numbers when performing mathematical calculations.
For example, if we want to find the sum of the text fields price1 txt and price2 txt,
we use:

totalCost = Number(pricel txt.text) + Number(price2 txt.text);

Otherwise, pricel_txt and price2_txt will be concatenated as strings, not added as
numbers. For more information on text fields, see TextField in the Language Reference.

70 | Chapter3: Dataand Datatypes

4~ ~4]e

é ,ch03.6283 Page 71 Wednesday, December 4, 2002 12:44 PM

Converting to a number by subtracting zero

To trick the interpreter into converting a datum to a number, we can subtract zero
from that datum. Again, the conversion follows the rules described in Table 3-1:

"953" - 0 // Yields 953
"molly" - 0 // Yields NaN
X -0 // Yields the value of x converted to a number

Converting to a number using the parselnt() and parseFloat() functions

The parselnt() and parseFloat() functions convert a string containing numbers and
letters into a number. The parselnt() function extracts the first integer that appears in
a string, provided that the string’s first nonblank character is a legal numeric charac-
ter. Otherwise, parselnt() yields NaN. The number extracted via parselnt() starts with
the first nonblank character in the string and ends with the character before either
the first nonnumeric character or the first occurrence of a decimal point.

Here are some parselnt() examples:

parseInt("1a") // Yields 1
parseInt("1.3a" // Yields 1
parseInt(" 1a") // Yields 1

parseInt("I am 14 years old") // Yields NaN (the first nonblank
// character is not a number)
parseInt("14 years old") // Yields 14

// Convert decimal to hexadecimal.

(255).toString(16); // Yields: ff

// Convert hexadecimal to decimal.

parseInt("OxFF"); // Yields 255
The parseFloat() function returns the first floating-point number that appears in a
string, provided that the string’s first nonblank character is a valid numeric charac-
ter. (A floating-point number is a positive or negative number that contains a deci-
mal value, such as -10.5 or 345.678.) Like parselnt(), parseFloat() yields the special
numeric value NaN if the string’s first nonblank character is not a valid numeric char-
acter. The number extracted by parseFloat() is the numeric conversion of the series of
characters that starts with the first nonblank character in the string and ends with the
character before the first nonnumeric character (any character other than +, -, 0-9, a
decimal point, or an e or E when used for exponential notation).

Here are some parseFloat() examples:

parsefFloat("1.3a"); // Extracts 1.3
parseFloat("2.75 years old") // Extracts 2.75
parseFloat("ince upon a time") // Extracts 1
parseFloat("I'm 3.5 feet tall") // Yields NaN

For more information on parselnt() and parseFloat()—including how to specify a
radix to convert between number systems—see the Language Reference.

Datatype Conversion | 71

4~ ~4]e

é ,ch03.6283 Page 72 Wednesday, December 4, 2002 12:44 PM

Converting to a Boolean

When we want to convert a datum to a Boolean, we can use the global Boolean()
function, which uses similar syntax to the String() and Number() functions. For
example:

Boolean(5); // The result is true

Boolean(x); // Converts value of x to a Boolean
Don’t confuse the global Boolean() function with the built-in class constructor of the
same name. Both are described in the Language Reference.

Conversion Duration

All type conversions performed on variables, array elements, and object properties
are temporary unless the conversion happens as part of an assignment. Here we see a
temporary conversion:

var x = "10"; // x is a string.

y =X -5 // y is now 5; x's value was temporarily converted to a number.

trace(typeof x); // Displays: "string"; the conversion was temporary because
// it occurred incidentally while evaluating an expression.

Here we see a permanent conversion that is the result of an assignment:

x = "10"; // x is a string.

X =X -5; // x is converted permanently to a number.

trace(typeof x); // Displays: "number"; the conversion was permanent because
// it occurred as part of an assignment.

Determining the Type of an Existing Datum

To determine what kind of data is held in a given expression before, say, proceeding
with a section of code, we use the typeof operator, as follows:

typeof expression;
The typeof operator returns a string telling us the datatype of expression, according
to Table 3-4.

Table 3-4. Return values of typeof

Original datatype typeof return value
Number “number”

String “string”

Boolean “boolean”

Object “object”

Array “object”

null “null”

Movieclip “movieclip”

72 | (Chapter3: Dataand Datatypes

é ,ch03.6283 Page 73 Wednesday, December 4, 2002 12:44 PM

Table 3-4. Return values of typeof (continued)

Original datatype typeof return value
Function “function”
undefined “undefined”

Here are a few examples:

trace(typeof "game over"); // Displays: "string" in the Output window

var x = 5;

trace(typeof x); // Displays: "number"
var now = new Date();

trace(typeof now); // Displays: "object"

As shown in Example 3-1, when combined with a for-in statement, typeof provides a
handy way to find all the movie clip instances on a timeline. Once the clips are iden-
tified, we can assign them to an array for programmatic handling. (If you can’t fol-
low all of Example 3-1, revisit it after completing Part)

Example 3-1. Populating an array with dynamically identified movie clips

// Create an array in which to store the clips.
var childClips = new Array();

// Check all the properties of the main timeline.
for (prop in _root) {
// If the current property is a movie clip...
if (typeof _root[prop] == "movieclip") {
// ...add it to the clips array.
childClips.push(_root[prop]);
}
}

// Now that our array is populated, we can use it to manipulate the clips it contains.
childClips[0]._x = 0; // Place the first clip on the left of the Stage.
childClips[1]. y = 0; // Place the second clip at the top of the Stage.

Primitive Data Versus Composite Data

So far we’ve been working mostly with numbers and strings, which are the most
common primitive datatypes. Primitive datatypes are the basic units of a language;
each primitive value represents a single datum (as opposed to an array of multiple
items) and holds that datum directly, rather than holding its address elsewhere in
memory.

ActionScript supports these primitive datatypes: number, string, boolean, undefined,
and null. ActionScript does not have a separate single-character datatype (e.g., char)
as found in C/C++ (strings are a primitive datatype in ActionScript, and not arrays of
chars as they are in C/C++).

Primitive Data Versus Composite Data | 73

4~ ~4]e

é ,ch03.6283 Page 74 Wednesday, December 4, 2002 12:44 PM

Primitive datatypes are, as their name suggests, simple. They can hold text messages,
frame numbers, secret passwords, and so on, but they don’t readily accommodate
higher levels of complexity. For more elaborate data handling—such as simulating
the physics of a dozen bouncing balls or managing a quiz with 500 questions and
answers—we turn to composite datatypes. Using composite data, we can manage
multiple pieces of related data as a single datum.

ActionScript supports the following composite datatypes: array, object, and movieclip.
Technically, functions are a type of object and are therefore considered composite
data, but we rarely manipulate them as such. See Chapter 9 for more about functions
as a datatype.

Whereas a single number is a primitive datum, a list (i.e., an array) of multiple num-
bers is a composite datum. Here’s a practical example of how composite datatypes
are useful: suppose we want to store the name of a customer named Derek. We can
create a variable that stores Derek’s name as a primitive value, like this:

var custName = "Derek";

However, this approach gets pretty cumbersome once we add more customers.
We're forced to use sequentially named variables to keep track of our customers—
custiName, cust2Name, cust3Name, and so on. Yuck! But if we use an array, we can
store our information much more efficiently:

customers = ["Derek", "James", "Joe"];

Now that’s nice and tidy. We’ll learn much more about composite datatypes in the
coming chapters.

Copying, Comparing, and Passing Data

There are three fundamental ways to manipulate data; we can copy it (e.g., assign the
value of variable x to variable y), compare it (e.g., check whether x equals y), and pass
it (e.g., supply a variable to a function as an argument). Primitive data values are cop-
ied, compared, and passed quite differently than composite data. When primitive
data is copied to a variable, that variable gets its own unique and private copy of the
data, stored separately in memory. Hence, the following lines of code cause the
string “Dave” to be stored twice in memory, once in the memory location reserved
for name1 and again in the location reserved for name2:

namel = "Dave";

name2 = namel,
We say that primitive data is copied by value because the data’s literal value is stored
in the memory location allotted to the variable. In contrast, when composite data is
copied to a variable, only a reference to the data (and not the actual data) is stored in
the variable’s memory slot. That reference tells the interpreter where the actual data
is kept (i.e., its address in memory). When a variable that contains composite data is

74 | Chapter3: Dataand Datatypes

4~ ~4]e

é ,ch03.6283 Page 75 Wednesday, December 4, 2002 12:44 PM

copied to another variable, it is the reference (often called a pointer) and not the data
itself that is copied. Hence, composite data is said to be copied by reference.

This makes good design sense, because it would be grossly inefficient to duplicate
large arrays and other composite datatypes, but it has important consequences for
our code. When multiple variables are assigned the same piece of composite data as
their value, each variable does not store a unique copy of the data (as it would if the
data were primitive). Rather, multiple variables can point to one copy of the compos-
ite data. If the value of the data changes, all the variables that point to it reflect the
updated value.

Let’s see how this affects a practical application. When two variables refer to the
same primitive data, each variable gets its own copy of the data. Here we assign the
value 12 to the variable x:

var x = 12;
Now let’s assign the value of x to a new variable, y:
var y = x;

As you can guess, y is now equal to 12. But y has its own copy of the value 12, dis-
tinct from the copy in x. If we change the value of x, the value of y is unaffected:

X = 15;
trace(x); // Displays: 15
trace(y); // Displays: 12

The value of y did not change when x changed because when we assigned x to y, y
received its own copy of the number 12 (i.e., the primitive datum contained by x).

Now let’s try the same thing with composite data. We’ll create a new array with three
elements and then assign that array to the variable x:

var x = ["first element", 234, 18.5];
Now, just as we did before, we’ll assign the value of x to y:
var y = x;

The value of y is now the same as the value of x. But what is the value of x ? Remem-
ber that because x refers to an array, which is a composite datum, the value of x is
not literally the array ["first element", 234, 18.5] but merely a reference to that
datum. Hence, when we assign x to y, what’s copied to y is not the array itself but the
reference contained in x that points to the array. So, both x and y point to the same
array, stored somewhere in memory.

If we change the array through the variable x, like this:
x[0] = "1st element";
the change is also reflected in y:

trace(y[0]); // Displays: "ist element"

Copying, Comparing, and Passing Data | 75

4~ ~4]e

é ,ch03.6283 Page 76 Wednesday, December 4, 2002 12:44 PM

Similarly, if we modify the array through y, the change can be seen via x:

y[1] = "second element";
trace (x[1]); // Displays: "second element"

To break the association, use the slice() function to create an entirely new array:

var x = ["first element", 234, 18.5];

// Copy each element of x to a new array stored in y

var y = x.slice(0);

y[0] = "hi there";

trace(x[0]); // Displays: "first element" (not "hi there")
trace(y[0]); // Displays: "hi there" (not "first element")

Let’s extend our example to see how primitive and composite data values are com-
pared. Here we assign x and y an identical primitive value; then we compare the two

variables:
X = 10;
y = 10;

trace(x ==y); // Displays: true

Because x and y contain primitive data, they are compared by value. In a value-based
comparison, data is compared literally. The number 10 in x is considered equal to
the number 10 in y because the numbers are made up of the same bytes.

Now, let’s assign x and y identical versions of the same composite data and compare
the two variables again:
x = [10, "hi", 5];

y = [1()) "hi", 5];
trace(x ==y); // Displays: false

This time, x and y contain composite data, so they are compared by reference. The
arrays we assigned to x and y have the same byte values, but the variables x and y are
not equal because they do not store a reference to the same composite datum. How-
ever, watch what happens when we copy the reference in y to x:

X =y;

trace(x ==vy); // Displays: true
Now that the references are the same, the values are considered equal. Thus, the
result of the comparison depends on the references in the variables, not the actual
byte values of the arrays to which they point.

Primitive and composite data are also treated differently when passed to functions, as
discussed under “Passing Parameters by Value Versus by Reference” in Chapter 9.
Most notably, when a primitive variable is passed as an argument to a function, any
changes to the datum within the function are not reflected in the original variable.
However, when passing a composite variable, changes within the function do affect

76 | Chapter3: Dataand Datatypes

é ,ch03.6283 Page 77 Wednesday, December 4, 2002 12:44 PM

*

the original variable. That is, if you pass an integer variable x to a function, changes
to the parameter within the function don’t affect its original value in the calling rou-
tine. But if you pass an array y to a function, any changes to that array within the
function will alter the original value of y outside the function (because changes to the
array affect the data to which y points).

Onward!

We've introduced data in ActionScript, and we’re ready for deeper study. In
Chapter 4, we’ll study the number, string, boolean, undefined, and null datatypes. In
Chapter 5, we’ll explore how to manipulate data using operators. In later chapters,
we’ll study the complex datatypes, such as movieclips, arrays and objects.

Onward! | 77

ﬁ

.

