
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

326

Chapter 13CHAPTER 13

Movie Clips

Every Flash document contains a Stage—on which we place shapes, text, and other
visual elements—and a main timeline, through which we define changes to the
Stage’s contents over time. The Stage (i.e., the main movie) can contain independent
submovies, called movie clips (or clips for short). Each movie clip has its own inde-
pendent timeline and canvas (the Stage is the canvas of the main movie) and can
even contain other movie clips. A clip contained within another clip is called a nested
clip. A clip that contains another clip is referred to as the nested clip’s host clip or
parent clip.

A single Flash document can contain a hierarchy of interrelated movie clips. For
example, the main movie may contain a mountainous landscape. A separate movie
clip containing an animated character can be moved across the landscape to give the
illusion that the character is walking. Another movie clip inside the character clip can
be used to animate the character’s blinking eyes independently. When the indepen-
dent elements in the cartoon character are played back together, they appear as a sin-
gle piece of content. Furthermore, each component can react intelligently to the
others; we can tell the eyes to blink when the character stops moving or tell the legs
to walk when the character starts moving.

ActionScript offers detailed control over movie clips; we can play a clip, stop it, move
its playhead within its timeline, programmatically set its properties (such as its size,
rotation, transparency level, and position on the Stage) and manipulate it as a true
programming object. As a formal component of the ActionScript language, movie
clips can be thought of as the raw material used to produce programmatically gener-
ated content in Flash. For example, a movie clip can serve as a ball or a paddle in a
pong game, as an order form in a catalog web site, or simply as a container for back-
ground sounds in an animation.

The “Objectness” of Movie Clips
As of Flash 5, movie clips can be manipulated like the objects we learned about in
Chapter 12. We can retrieve and set the properties of a clip, and we can invoke built-in

,ch13.7626  Page 326  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

The “Objectness” of Movie Clips | 327

or custom methods on a clip. An operation performed on a clip often has a visible or
audible result in the Flash Player.

Movie clips are not truly a type of object, but they are object-like; although we can
neither create movie clips via a class constructor nor use an object literal to instanti-
ate a movie clip, we can instantiate movie clips using attachMovie(),
duplicateMovieClip() and createEmptyMovieClip() (introduced in Flash Player 6). So
what, then, are movie clips, if not objects? They are members of their very own
object-like datatype, called movieclip (we can prove it by executing typeof on a movie
clip, which returns the string “movieclip”). The main difference between movie clips
and other objects is how they are allocated (created) and deallocated (disposed of, or
freed). For details, see:

http://www.moock.org/asdg/technotes/movieclipDatatype

Despite this technicality, however, we nearly always treat movie clips exactly as we
treat objects.

So how does the “objectness” of movie clips affect our use of them in ActionScript?
Most notably, it allows us to call methods on clips and examine their properties, just
as we can for other objects. Movie clips can be controlled directly through built-in
methods. For example:

eyes_mc.play( );

We can retrieve and set a movie clip’s properties using the dot operator, just as we
access the properties of any object:

ball_mc._xscale = 90;
var radius = ball_mc._width / 2;

A variable in a movie clip is simply a property of that clip, and we can use the dot
operator to set and retrieve variable values:

theClip_mc.someVariable = 14;
x = theClip_mc.someVariable;

Nested movie clips can be treated as object properties of their parent movie clips. We
therefore use the dot operator to access nested clips:

clipA.clipB.clipC.play();

and we use the reserved _parent property to refer to the clip containing the current
clip:

_parent.clipC.play();

Treating clips as objects affords us all the luxuries of convenient syntax and flexible
playback control. But our use of clips as objects also lets us manage clips as data; we
can store a movie clip reference in an array element or a variable, and we can even
pass a clip reference to a function as an argument. Here, for example, is a function
that moves a clip to a particular location on the screen:

function moveClipTo (clip, x, y) {
  clip._x = x;

,ch13.7626  Page 327  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 13: Movie Clips

  clip._y = y;
}
moveClipTo(ball_mc, 14, 399);

In this chapter, we’ll cover the specifics of referencing, controlling, and manipulat-
ing movie clips as data objects.

The MovieClip Class
All individual movie clips are instances of the MovieClip class, which defines the
properties, methods, and event handlers supported by movie clips. The MovieClip
class can be manipulated like other built-in classes; we can overwrite its methods or
add new methods to it using the techniques we studied in Chapter 12. For example,
the following code adds a new method, getArea(), to all movie clips:

MovieClip.prototype.getArea = function ( ) {
  return this._width * this._height;
};

As we’ll see in Chapter 14, as of Flash MX, the MovieClip class can even be used as
the superclass for new classes (i.e., new subclasses can be derived from the MovieClip
class). For full coverage of every property, method, and event handler supported by
the MovieClip class, see the Language Reference.

Types of Movie Clips
Not all movie clips are created equal. In fact, there are three distinct types of clip
available in Flash:

• Main movies

• Regular movie clips

• Components (formerly known as Smart Clips in Flash 5)

In addition to these three official varieties, we can distinguish four subcategories of
regular movie clips:

• Process clips

• Script clips

• Linked clips

• Seed clips

While these unofficial subcategories are not formal terms used in ActionScript, they
provide a useful way to think about programming with movie clips. Let’s take a
closer look at each movie clip type.

,ch13.7626  Page 328  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Types of Movie Clips | 329

Main Movies
The main movie of a Flash document is the main timeline and Stage present in every
.swf document. The main movie is the foundation for all the content in the docu-
ment, including all other movie clips. We sometimes refer to the main movie as the
main timeline, the main movie timeline, the main Stage, or simply the root.

Note that while each .swf file contains only one main movie, more than one .swf file
can reside in the Flash Player at once—we can load multiple .swf documents (and
therefore multiple main movies) onto a stack of levels via the loadMovie() and
unloadMovie() functions, which we’ll study later.

Main movies can be manipulated in much the same way as regular movie clips, with
the following exceptions:

• A main movie cannot be removed from a .swf file (although a .swf file, itself, can
be removed from the Flash Player).

• The following movie clip methods do not work when invoked on a main movie:
duplicateMovieClip(), removeMovieClip(), and swapDepths().

• The following properties are not supported by main movies: enabled,
focusEnabled, hitArea, _name, _parent, tabChildren, tabEnabled, tabIndex,
trackAsMenu, and useHandCursor.

• In Flash 5, event handlers cannot be attached to the main movie. As of Flash
Player 6, the following event handler properties can be assigned to the main
movie: onData(), onEnterFrame(), onKeyDown(), onKeyUp(), onMouseDown(),
onMouseMove(), and onMouseUp().

• Main movies cannot receive keyboard input focus.

• Main movies can be referenced through the built-in global _root and _leveln
properties.

Regular Movie Clips
Regular movie clips are the most common and fundamental content containers; they
hold visual elements and sounds, and they can even react to user input and movie
playback through event handlers. For JavaScript programmers who are used to work-
ing with DHTML, it may be helpful to think of the main movie as analogous to an
HTML document object and regular movie clips as analogous to that document’s
layer objects.

Components
An improvement over Flash 5 Smart Clips, a Flash MX component is a movie clip
that includes a graphical user interface used to customize the clip’s properties in the

,ch13.7626  Page 329  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 13: Movie Clips

authoring tool. Components typically are developed by advanced programmers to
distribute as self-contained program modules, such as a pull-down menu or slider
bar. Components also provide an easy way for less-experienced Flash authors to cus-
tomize a movie clip’s behavior without knowing how the code of the clip works.
We’ll cover components in detail in Chapter 14 and Chapter 16. Flash MX comes
with a collection of ready-made interface components known as the Flash UI Com-
ponents. To access the Flash UI Components, choose Window ➝ Components.

Process Clips
A process clip is a movie clip used not for content but simply to execute a block of
code repeatedly. Process clips can be built with an onEnterFrame() event handler or
with a timeline loop, as we saw  in Chapter 8 under “Timeline and Clip Event Loops.”

As of Flash MX, the functionality of process clips can be partially replaced by the
setInterval() function, which executes a function or method periodically. Timed code
should be implemented with setInterval(), whereas code synched specifically with
the frame rate should be implemented with a process clip. See the Language Refer-
ence for a discussion of setInterval().

Script Clips
Like a process clip, a script clip is an empty movie clip used not for content but for
tracking some variable, defining some class, or simply executing some arbitrary
script. For example, in Flash 5, we can use a script clip to hold event handlers that
detect keypresses or mouse events. In Flash MX, we can use a script clip to create a
so-called “code only” component.

Linked Clips
A linked clip is a movie clip that either exports from or imports into the Library of a
movie. Export and import settings are available through every movie clip’s Linkage
option, found in the Library. We most often use linked clips when dynamically gen-
erating an instance of a clip directly from a Library symbol using the attachMovie()
method, as we’ll see later.

Seed Clips
Before the attachMovie() method was introduced in Flash 5, we used the
duplicateMovieClip() function to create new movie clips based on some existing clip,
called a seed clip. A seed clip is a movie clip that resides on stage solely for the purpose
of being copied via duplicateMovieClip(). With the introduction of attachMovie(),
which instantiates clips from the Library, the need for on-stage seed clips has dimin-
ished. However, we still use seed clips and duplicateMovieClip() when we wish to
retain a clip’s transformations and onClipEvent() handlers in the process of copying it.

,ch13.7626  Page 330  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating Movie Clips | 331

In a movie that makes heavy use of duplicateMovieClip() to dynamically generate
content, it’s common to see a row of seed clips on the outskirts of the movie canvas.
The seed clips are used only to derive duplicate clips and are, therefore, kept off
stage.

Creating Movie Clips
We usually treat movie clips just as we treat objects—we set their properties with the
dot operator; we invoke their methods with the function-call operator (parentheses);
and we store them in variables, array elements, and object properties. We do not,
however, create movie clips in the same way we create objects. We cannot literally
describe a movie clip in our code as we might describe an object with an object lit-
eral. And we cannot generate a movie clip with the new operator:

myClip = new MovieClip( );  // Nice try buddy, but it won't work

Although Flash Player 6 supports the new MovieClip() command, that command
establishes a MovieClip subclass; it cannot be used to create a new movie clip instance
in a movie. Instead, we normally create movie clips directly in the authoring tool, by
hand. Once a clip is created, we can use commands such as duplicateMovieClip() and
attachMovie() to make new, independent duplicates of it. As of Flash Player 6, we can
also create a completely new movie clip at runtime with the createEmptyMovieClip()
method.

Movie Clip Symbols and Instances
Just as all object instances are based on a class, all movie clip instances are based on
a template movie clip, called a symbol (sometimes called a definition). A movie clip’s
symbol acts as a model for the clip’s content and structure. With the exception of
clips created via createEmptyMovieClip(), we generate a specific clip instance from a
movie clip symbol stored in the Library. Using a symbol, we can both manually and
programmatically create clips to be rendered in a movie.

A specific copy of a movie clip symbol is called an instance. Instances are the individ-
ual clip objects that can be manipulated with ActionScript; a symbol is the mold from
which instances of a specific movie clip are derived. Movie clip symbols are created
in the Flash authoring tool. To make a new, blank symbol, we follow these steps:

1. Select Insert ➝ New Symbol. The Create New Symbol dialog box appears.

2. In the Name field, type an identifier for the symbol.

3. For Behavior, select the Movie Clip radio button.

4. Click OK.

Normally, the next step is to fill the symbol’s canvas and timeline with the content
of our movie clip. Once a symbol has been created, it resides in the Library, waiting
for us to use it to instantiate a movie clip instance. However, it is also possible to

,ch13.7626  Page 331  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 13: Movie Clips

convert a group of shapes and objects that already exist on stage into a movie clip
symbol. To do so, we follow these steps:

1. Select the desired shapes and objects.

2. Select Insert ➝ Convert to Symbol.

3. In the Name field, type an identifier for the symbol.

4. For Behavior, select the Movie Clip radio button.

5. Click OK.

The shapes and objects we select to create the new movie clip symbol are replaced by
an unnamed instance of that new clip. The corresponding movie clip symbol appears
in the Library, ready to be used to create further instances.

Creating Instances
There are four ways to create a new movie clip instance. Three of these are program-
matic; the other is strictly manual and is undertaken in the Flash authoring tool. All
but one method, createEmptyMovieClip(), require an existing movie clip symbol
from which to derive the new instance.

Manually creating instances

We can create movie clip instances manually using the Library in the Flash author-
ing environment. By physically dragging a movie clip symbol out of the Library and
onto the Stage, we generate a new instance. An instance created in this way should
be named manually via the Instance panel (Flash 5) or Property inspector (Flash
MX). You’ll learn more about instance names later in this chapter. Refer to “Using
Symbols, Instances, and Library Assets” in the Macromedia Flash Help if you’ve
never worked with movie clips in Flash.

Creating instances with duplicateMovieClip( )

Any instance that already resides on the Stage of a Flash movie can be duplicated
with ActionScript. We can then treat that copy as a completely independent clip.
Both manually created and programmatically created clip instances can be dupli-
cated. In other words, it’s legal to duplicate a duplicate.

There are two ways to duplicate an instance using duplicateMovieClip():

• We can invoke duplicateMovieClip() as a global function, using the following syn-
tax:

duplicateMovieClip(target, newName, depth);

where target is a string indicating the name of the instance we want to dupli-
cate, newName is a string that specifies the identifier for the new instance, and
depth is an integer that designates where in the content stack (we’ll discuss the
content stack soon) we want to place the new instance.

,ch13.7626  Page 332  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating Movie Clips | 333

• We can also invoke duplicateMovieClip() as a method of an existing instance:
theClip.duplicateMovieClip(newName, depth);

where theClip is the name of the clip we wish to duplicate, and newName and
depth both operate as in the previous example.

When created using the duplicateMovieClip() function, the newly cre-
ated clip is attached as a child of either target’s or theClip’s parent.
That is, the new clip becomes a sibling of either target or myClip in the
movie clip hierarchy.

When created via duplicateMovieClip(), an instance is initially positioned directly on
top of its seed clip. Our first post-duplication task, therefore, is usually moving the
duplicated clip to a new position. For example:

ball_mc.duplicateMovieClip("ball2_mc", 0);
ball2_mc._x += 100;
ball2_mc._y += 50;

Duplicated instances whose seed clips have been transformed (e.g., colored, rotated,
or resized), via ActionScript or manually in the Flash authoring tool, inherit the
transformation of their seed clips at duplication time. Subsequent transformations to
the seed clip do not affect duplicated instances. Likewise, each instance can be trans-
formed separately. For example, if a seed clip is rotated 45 degrees and then dupli-
cated, the duplicate instance’s initial rotation is 45 degrees:

seedClip_mc._rotation = 45;
seedClip_mc.duplicateMovieClip("newClip_mc", 0);
trace(newClip_mc._rotation);                       // Displays: 45

If we then rotate the duplicate instance by 10 degrees, its rotation is 55 degrees, but
the seed clip’s rotation is still 45 degrees:

newClip_mc._rotation += 10;
trace(newClip_mc._rotation);      // Displays: 55
trace(seedClip_mc._rotation);     // Displays: 45

By duplicating many instances in a row and adjusting the transformation of each
duplicate slightly, we can achieve interesting compound effects, such as stars in the
sky, trails effects, and geometric animations (for an example, see “Load Event Star-
field” in the online Code Depot).

Using duplicateMovieClip() offers other advantages over placing clips manually in a
movie, such as the ability to:

• Control exactly when a clip appears on the Stage, relative to a program’s execu-
tion

• Control exactly when a clip is removed from the Stage, relative to a program’s
execution

• Copy a clip’s event handlers

,ch13.7626  Page 333  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 13: Movie Clips

These abilities give us advanced programmatic control over the content in a movie.
With a manually created clip, we must preordain the birth and death of the clip
using the timeline.

Creating instances with attachMovie( )

Like duplicateMovieClip(), the attachMovie() method lets us create a movie clip
instance at runtime; however, attachMovie() creates a new instance from a Library
symbol instead of from another movie clip instance. To “attach” a movie clip means
to make one movie clip the child of either the main timeline or another movie clip in
the movie clip hierarchy. In order to use attachMovie() to create an instance of a
symbol, we must first export that symbol from the Library. Here’s how:

1. In the Library, select the desired symbol.

2. In the Library’s pop-up Options menu, select Linkage. The Linkage Properties
dialog box appears.

3. Select the Export For ActionScript checkbox.

4. In the Identifier field, type a unique name for the clip symbol. The name can be
any string—often simply the same name as the symbol itself—but should be dif-
ferent from all other exported clip symbols.

5. In Flash MX, we can also set the frame at which the link clip will be exported with
the movie. For details, see MovieClip.attachMovie() in the Language Reference.

6. Click OK.

Once a clip symbol has been exported, we can attach new instances of that symbol
to an existing clip by invoking attachMovie() with the following syntax:

theClip.attachMovie(symbolIdentifier, newName, depth, [initObject]);

where theClip is the name of the movie clip to which we want to attach the new
instance. If theClip is omitted, attachMovie() attaches the new instance to the cur-
rent clip (the clip on which the attachMovie() statement resides). The
symbolIdentifier parameter is a string containing the name of the symbol we’re
using to generate our instance, as specified in the Identifier field of the Linkage
options in the Library (Step 4). The symbolIdentifier is not necessarily the same
name as the symbol itself. The newName parameter is a string that specifies the identi-
fier for the new instance we’re creating. If newName is not a string that converts to a
legal identifier, you’re in for some potentially surprising results, as shown in the
examples later in this section. Finally, depth is an integer that designates where in the
host clip’s content stack to place the new instance. Flash MX adds support for a
fourth, optional parameter called initObject, which lets you copy properties from an
existing object to the new clip. See MovieClip.attachMovie() in the Language Refer-
ence for full details.

,ch13.7626  Page 334  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating Movie Clips | 335

For example, to attach a new movie clip, based on the “square” symbol, to the cur-
rent timeline, use:

this.attachMovie("square", "square1_mc", 1);
square1_mc._x = 50;   // Position the new clip at a horizontal position of 50
square1_mc._y = 200;  // ...and a vertical position of 200

The attachMovie() method attaches the new clip as a child of theClip
(or of the current clip if no clip is specified). Contrast this with
duplicateMovieClip(), which attaches the clip as a sibling of the dupli-
cated clip.

When we attach an instance to another clip, the instance is positioned in the center
of the clip, among the clip’s content stack. When we attach an instance to the main
movie of a document, the instance is positioned in the upper-left corner of the Stage,
at coordinates (0, 0).

In Flash Player 6, the attachMovie() function returns a reference to the newly created
movie clip, which is useful for debugging. If the function returns undefined, then the
movie clip creation failed (except in Flash 5, where attachMovie() always returns
undefined). In this case, you most likely specified the wrong name for
symbolIdentifier (remember to specify the quotes around the string, enter the name
correctly, and use the export name specified in the Linkage options, not the sym-
bol’s Library name). The symbolIdentifier string is not case-sensitive, so if the sym-
bol is exported as “Symbol 1”, you can (but should not, as a matter of good form)
specify “symbol 1” as symbolIdentifier.

The return value of the attachMovie() function is particularly useful if the operation
succeeds and yet you are still having trouble referring to your newly created movie
clip by the expected identifier. Technically, newName does not need to be a legal iden-
tifier, but you’ll have trouble referring to the new clip if it isn’t, unless you store the
return value in a variable. That is, you can use the return value to access the clip after
it is attached, if the newName parameter was specified incorrectly and could not be
converted to a legal identifier. The newName parameter is actually converted first to a
string, and later converted again to an identifier. Let’s see how this works.

In our first example, newName is specified as “newClip 1”, which has a space in it, so
it can’t be converted to a legal identifier. Luckily, you can use the return value stored
in newClip_mc to refer to the newly created clip:

newClip_mc = _root.attachMovie("Symbol 1", "newClip 1", 0);
trace(newClip_mc);  // Displays: _level0.newClip 1
                    // (which is not a valid identifier)

In the next example, newName is specified as newClip1, which takes the form of a legal
identifier but is missing the necessary quotes to make it a string. The attachMovie()

,ch13.7626  Page 335  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 13: Movie Clips

command first tries to convert it to a string, but because newClip1 looks to the inter-
preter like an undefined variable, the conversion yields the empty string. Luckily, you
can again use the return value stored in newClip_mc to refer to the newly created clip:

newClip_mc = _root.attachMovie("Symbol 1", newClip1, 0);
trace(newClip_mc);  // Displays _level0.
                    // (the clip's name is an empty string!)

What if newName is specified as a legal identifier, such as ball_mc, that already refers to
an existing movie clip? Again, the attachMovie() command first tries to convert it to a
string, which (referring to Table 3-2 for string conversion of movie clips) yields the
interim string “_level0.ball_mc” for newName. This series of conversions results in the
newly created movie clip having the incorrect name “_level0._level0.ball_mc”. Luck-
ily, yet again you can use the return value stored in newClip_mc to refer to the newly
created clip properly:

//Assume ball_mc is an existing (valid) movie clip identifier
newClip_mc = _root.attachMovie("Symbol 1", ball_mc, 0);
trace(newClip_mc);        // Displays "_level0._level0.ball_mc"

As you can see, life is much easier when we make sure to provide a string that con-
verts to a  legal identifier for newName.

Creating instances with createEmptyMovieClip( )

As of Flash Player 6, completely blank new movie clip instances can be created in
an existing clip with the createEmptyMovieClip() method, which has the following
syntax:

theClip.createEmptyMovieClip(newName, depth);

where theClip is the name of an existing movie clip to which we want to attach a
new, empty movie clip. The new clip instance is given a name of newName and placed
in theClip’s content stack at the specified depth.

Movie clips created with createEmptyMovieClip() are not derived from a Library sym-
bol; they are simply blank movie clip instances with one frame. Empty movie clips
can be used as drawing canvases, script clips, or containers for nested clips (e.g., a
form clip that contains text fields and a Submit button).

Movie Clip Instance Names
When we create instances, we assign them identifiers, or instance names, that allow
us to refer to them later. Assigning identifiers to movie clips differs from assigning
them to regular objects. When we create a typical object (not a movie clip), we must
assign that object to a variable or other data container in order for the object to per-
sist and in order for us to refer to it by name in the future. For example:

new Object( );              // Object dies immediately after it's created, and
                           // we can't refer to it because we didn't store it.

,ch13.7626  Page 336  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating Movie Clips | 337

var thing = new Object( );  // Object reference is stored in thing,
                           // and can later be referred to as thing.

Movie clip instances need not be stored in variables in order for us to refer to them.
Unlike typical objects, movie clip instances are accessible in ActionScript via their
instance names as soon as they are created, either programmatically or in the author-
ing tool. The manner in which an instance gets its initial name depends on how it
was created. Programmatically generated instances are named at runtime by the
function that creates them. Manually created instances are normally assigned explicit
instance names in the authoring tool through the Property inspector, as follows:

1. Select the instance on stage.

2. In the Property inspector, for <Instance Name>, enter the instance name.

(In Flash 5, the instance name is set via the Instance panel.) Once the instance is
named in the authoring tool, it can be accessed via ActionScript using the same
name. (It is good practice to add “_mc” as a suffix to the identifier name of any
movie clips you create during authoring or at runtime.) For example, if there exists
an instance named ball_mc on stage, we can access its properties like this:

ball_mc._y = 200;

If a manually created clip is not given an instance name, it is assigned one automati-
cally by the Flash Player at runtime. Automatic instance names fall in the sequence
instance1, instance2, instance3, ...instancen, but these names don’t meaningfully
describe our clip’s content (and we must guess at the automatic name that was gen-
erated). For example, the first unnamed clip instance can be accessed as:

instance1._y = 200;

Because instance names assigned during either authoring or runtime
are used as identifiers in ActionScript, we should always compose
them according to the rules for creating a legal identifier, as described
in Chapter 15. Most notably, instance names should not begin with a
number or include hyphens or spaces. By convention, movie clip
instance names should include the suffix “_mc”, particularly if they
are going to be referenced via ActionScript at runtime.

Each clip’s instance name is stored in its built-in _name property, which can be both
retrieved and set. For clips defined manually during authoring, the default _name is a
string version of the original clip identifier:

trace(ball_mc._name);       // Displays "ball_mc"

For programmatically defined clips, the initial value for _name is specified by the
newName parameter passed to duplicateMovieClip() or attachMovie().

The _name property is useful for debugging or displaying the name of a clip (without
the fully qualified path). Note how the value returned by _name differs from other

,ch13.7626  Page 337  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 13: Movie Clips

representations of a movie clip identifier (see also the legacy _target property dis-
cussed later in this chapter):

trace(instance1._name);         // Displays instance1
trace(instance1);               // Displays _level0.instance1
trace(String(instance1));       // Displays _level0.instance1
trace(targetPath(instance1));   // Displays _level0.instance1
trace(instance1.toString( ));    // Displays [object Object]

Example 13-1 uses the _name property to find a particular movie clip. See “The _name
property” later in this chapter for an example showing how to use the _name property
to prevent an infinite loop.

If we change an instance’s _name property, all future references to the instance must
use the new name. For example, if we change the value of ball_mc._name, the ball_mc
reference ceases to exist, and we must subsequently use the new name to refer to the
instance:

ball_mc._name = "circle_mc";  // Change ball_mc's name to circle_mc
trace(typeof ball_mc);        // Displays "undefined" because ball_mc
                              // no longer exists.
circle_mc._x = 59;            // After the name change, you must
                              // use the clip's new name.

Therefore, you shouldn’t change a movie clip’s _name property at runtime, as it is can
make your code fail, or at least make it very difficult to follow.

Importing External Movies and Images
We’ve discussed creating movie clip instances within a single document, but the
Flash Player can also display multiple .swf documents simultaneously. We can use
loadMovie()—as either a global function or a movie clip method—to import an
external .swf file into the Player and place it either in a clip instance or on a num-
bered level above the base movie (i.e., in the foreground relative to the base movie).

In Flash Player 6, loadMovie() can also load JPEG image files into a
movie clip or document level. For details, see loadMovie() and
MovieClip.loadMovie() in the Language Reference.

Example 13-1. Finding movie clips on a timeline

// Finds all movie clips inside gameboard_mc with the word "enemy" in their name.
for (var prop in gameboard_mc) {
  if (typeof gameboard_mc[prop] = = "movieclip") {
    if (gameboard_mc[prop]._name.indexOf("enemy") != -1) {
      // Found an enemy movie clip...make it attack the player.
      gameboard_mc[prop].attackPlayer( );
    }
  }
}

,ch13.7626  Page 338  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating Movie Clips | 339

Dividing content into separate files gives us precise control over the downloading
process and makes partial application updates easier. Suppose, for example, we have
a movie containing a main navigation menu and five subsections. Before the user can
navigate to section five, sections one through four must finish downloading. But if
we place each section in a separate .swf file, the sections can be loaded in an arbi-
trary order, giving the user direct access to each section. To update a section, we can
simply replace the appropriate .swf file with a new one.

When an external .swf is loaded into a level, its main movie timeline becomes the
root timeline of that level, and it replaces any prior movie loaded in that level. Simi-
larly, when an external movie is loaded into a clip, the main timeline of the loaded
movie replaces that clip’s timeline, unloading the existing graphics, sounds, and
scripts in that clip.

Like duplicateMovieClip(), loadMovie() can be used as both a standalone function
and an instance method. The standalone syntax of loadMovie() is as follows:

loadMovie(url, location)

where url specifies the address of the external .swf file to load. The location parame-
ter is a string indicating the path to an existing clip or a document level that should
host the new .swf file (i.e., where the loaded movie should be placed). For example:

loadMovie("circle.swf", "_level1");
loadMovie("photos.swf", "viewClip_mc");

Because a movie clip reference is converted to a path when used as a string, location
can also be supplied as a movie clip reference, such as _level1 instead of "_level1".
Take care when using references, however. If the reference supplied does not point to
a valid clip, the loadMovie() function has an unexpected behavior—it loads the
external .swf into the current timeline. See “Method Versus Global Function Overlap
Issues” later in this chapter for more information on this topic.

The MovieClip method version of loadMovie() has the following syntax:

theClip.loadMovie(url);

When used as a clip method, loadMovie() assumes we’re loading the external .swf
into theClip, so the location parameter required by the standalone loadMovie() func-
tion is not needed. Therefore, we supply only the path to the .swf to load via the url
parameter. Naturally, url can be either an absolute or a relative filename, such as:

viewClip.loadMovie("photos.swf");

When placed into a clip instance, a loaded movie adopts the properties of that clip
(e.g., the clip’s scale, rotation, color transformation, etc.).

Note that theClip must exist in order for loadMovie() to be used in its method form.
For example, the following attempt to load circle.swf will fail if _level1 is empty:

_level1.loadMovie("circle.swf");

,ch13.7626  Page 339  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 13: Movie Clips

Load movie execution order

The loadMovie() function is not immediately executed when it appears in a state-
ment block. In fact, it is not executed until all other statements in the block have fin-
ished executing.

We cannot access an externally loaded movie’s properties or methods
in the same statement block as the loadMovie() invocation that loads it
into the Player.

Because loadMovie() loads an external file (usually over a network), its execution is
asynchronous. That is, loadMovie() may finish at any time, depending on the speed
of the file transfer. Therefore, before we access a loaded movie, we should always
check that the movie has finished transferring to the Player. We do so with what’s
commonly called a preloader—code that checks how much of a file has loaded
before allowing some action to take place. Preloaders can be built with the
_totalframes and _framesloaded movie clip properties and the getBytesLoaded() and
getBytesTotal() movie clip methods. See the appropriate entries under the MovieClip
class in the Language Reference for sample code.

Movie and Instance Stacking Order
All movie clip instances and externally loaded movies displayed in the Player reside
in a visual stacking order akin to a deck of cards. When instances or externally
loaded .swf files overlap in the Player, one clip (the “higher” of the two) obscures the

Using loadMovie( ) with attachMovie( )
Loading an external .swf file into a clip instance with loadMovie() has a surprising
result—it prevents us from attaching instances to that clip via attachMovie(). Once a
clip has an external .swf file loaded into it, that clip can no longer bear attached movies
from the Library from which it originated. For example, if movie1.swf contains an
instance named clipA, and we load movie2.swf into clipA, we can no longer attach
instances to clipA from movie1.swf’s Library.

Why? The attachMovie() method works only within a single document. That is, we
can’t attach instances from one document’s Library to another document. When we
load a .swf file into a clip, we are populating that clip with a new document and, hence,
a new (different) Library. Subsequent attempts to attach instances from our original
document to the clip fail, because the clip’s Library no longer matches its original doc-
ument’s Library. However, if we unload the document in the clip via unloadMovie(),
we regain the ability to attach movies to the clip from its own document Library.

Similarly, loading a .swf file into a clip with loadMovie() prevents us from copying that
clip via duplicateMovieClip().

,ch13.7626  Page 340  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Movie and Instance Stacking Order | 341

other clip (the “lower” of the two). This appears simple enough in principle, but the
main content stack, which contains all the instances and .swf files, is actually divided
into many smaller substacks. We’ll first look at these substacks individually first, and
then we’ll see how they combine to form the main stack. (The content stack in this
discussion has no direct relation to the LIFO and FIFO stacks discussed in
Chapter 11.)

Movie Clip Depths
Each movie clip instance, including the main timeline of a movie, places its various
contents (movie clips, text fields, and buttons) on one of two stacks: the internal
layer stack (for author-time assets) or the programmatically generated content stack
(for runtime assets). The items in these stacks (known collectively as the clip’s con-
tent stack) are given an integer depth position that governs how they overlap on
screen. Depth positions range from –16384 to 1048575. Depths from 0 to 1048575
are reserved for dynamically generated content; depths from –16383 to –1 are
reserved for author-time content; and depth –16384 is reserved for dynamic content
that appears beneath all author-time content in each clip. To retrieve the depth posi-
tion of an item, we use the getDepth() method. To change the depth position of two
movie clips, we use the swapDepths() method.

The Internal Layer Stack
Instances created manually in the Flash authoring tool reside in the internal layer
stack. This stack’s order is governed by the actual layers in a movie’s timeline; when
two manually created instances on separate timeline layers overlap, the instance on
the uppermost layer obscures the instance on the lowermost layer. (Here, “upper-
most” means that a layer appears at the top of the timeline panel in the Flash author-
ing tool).

Furthermore, because multiple clips can reside on a single timeline layer, each layer
in the internal layer stack actually maintains its own ministack. Overlapping clips
that reside on the same layer of a timeline are stacked in the authoring tool via the
Modify ➝ Arrange commands.

We can swap the position of two instances in the internal layer stack using the
swapDepths() method, provided they reside on the same timeline (that is, the value
of the two clips’ _parent property must be the same). Prior to Flash 5, there was no
way to alter the internal layer stack via ActionScript.

The depth position of author-time assets can be unpredictable and is considered
reserved for use by the authoring tool. Therefore, when swapping the depths of an
author-time movie clip and a dynamically created clip, always use the target parame-
ter of swapDepths()—not an integer depth level—as described in the Language Ref-
erence entry for MovieClip.swapDepths().

,ch13.7626  Page 341  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 13: Movie Clips

The Programmatically Generated Content Stack
Programmatically generated instances are normally stacked separately from the man-
ually created instances held in the internal layer stack. Each movie clip has its own
programmatically generated content stack that holds:

• Movie clip instances created via duplicateMovieClip(), attachMovie(), and
createEmptyMovieClip()

• Text field instances created via createTextField()

The stacking order for movie clips in the programmatically generated content stack
varies, depending on how they were created.

How clips generated via attachMovie( ) and createEmptyMovieClip( )
are added to the stack

A new instance generated via attachMovie() or createEmptyMovieClip() is always
stacked above (i.e., in the foreground relative to) the clip to which it was attached.
For example, suppose that we have two clips—X and Y—in the internal layer stack of
a movie and that X resides on a layer above Y. Now further suppose we attach a new
clip, A, to X and a new clip, B, to Y:

x.attachMovie("A", "A", 0);
y.attachMovie("B", "B", 0);

In our scenario, the clips appear from top to bottom in this order: A, X, B, Y, as shown
in Figure 13-1.

Once a clip is generated, it too provides a separate space above its internal layer stack
for more programmatically generated clips. That is, we can attach clips to attached
clips.

Clips attached to the _root movie of a Flash document are placed in the _root
movie’s programmatically generated content stack, which appears in front of all clips
in the _root movie, even those that contain programmatically generated content.

Figure 13-1. A sample instance stack

Attached Instance “A”

Manually Created Instance “X”

Attached Instance “B”

Manually Created Instance “Y”

Timeline Layer 2

Timeline Layer 1

,ch13.7626  Page 342  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Movie and Instance Stacking Order | 343

Let’s extend our example. If we attach clip C to the _root of the movie that contains
clips X, Y, A, and B, then clip C appears in front of all the other clips. Figure 13-2
shows the extended structure.

How clips generated via duplicateMovieClip( ) are added to the stack

Each instance duplicated via duplicateMovieClip() is assigned to the programmatic
stack of its seed clip’s parent (the movie clip upon whose timeline the seed clip
resides). Let’s return to our example to see how this works.

If we create clip D by duplicating clip X (which was created manually), then clip D is
placed in the stack above _root, with clip C. A seed clip and its duplicate always
share the same parent (in this example, _root). Similarly, if we create clip E by dupli-
cating clip D, then E is also placed in the stack above _root, with C and D. But if we
create clip F by duplicating clip A—which was created with attachMovie()—then F is
placed in the programmatic stack above X, with clip A. Again, F and its seed clip, A,
share the same parent: X. Figure 13-3 is worth a thousand words.

Assigning depths to instances in the programmatically generated content stack

You may be wondering what determines the stacking order of clips C, D, and E, or of
clips A and F, in Figure 13-3. The stacking order of a programmatically generated clip
is determined by the depth argument passed to the attachMovie(),
createEmptyMovieClip(), or duplicateMovieClip() methods, and can be changed at
any time using the swapDepths() function. Each programmatically generated clip’s
depth (sometimes called its z-index) determines its position within a particular stack
of programmatically generated clips.

The depth of a clip can be any integer and is measured from the bottom up—so,
depth 5 is lower than depth 6, depth 7 is higher than (i.e., in front of) depth 6, depth
8 is higher still, and so on. When two programmatically generated clips occupy the

Figure 13-2. An instance stack showing a clip attached to _root

Attached Instance “A”

Manually Created Instance “X”

Attached Instance “B”

Manually Created Instance “Y”

Timeline Layer 2

Timeline Layer 1

Attached Instance “C”Programmatically generated
clips attached to _root

,ch13.7626  Page 343  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 13: Movie Clips

same position on screen, the one with the greater depth value is rendered in front of
the other.

Although multiple clips can occupy a single author-time timeline layer, all depth
positions are single-occupant dwellings. Only one clip can occupy a depth position
at a time—placing a clip into an occupied position displaces (and deletes) the layer’s
previous occupant.

It’s okay for there to be gaps in the depths of clips; you can have a clip at depth 0,
another at depth 500, and a third one at depth 1000. No performance hit or increase
in memory consumption results from having gaps in your depth assignments.

The .swf Document “_level” Stack
In addition to the internal layer stack and the programmatically generated content
stack, there’s a third (and final) kind of stack, the document stack (or level stack),
which governs the overlapping not of instances, but of entire .swf files loaded into
the Player via loadMovie().

The first .swf file loaded into the Flash Player is placed in the lowest level of the doc-
ument stack (represented by the global property _level0). If we load any additional
.swf files into the Player after that first document, we can optionally place them in
front of the original document by assigning them to a level above _level0 in the doc-
ument stack. All of the content in the higher-level documents in the level stack
appears in front of lower-level documents, regardless of the movie clip stacking order
within each document.

Just as the programmatically generated content stack allows only one clip per layer,
the document stack allows only one document per level. If we load a .swf file into
an occupied level, the level’s previous occupant is replaced by the newly loaded

Figure 13-3. An instance stack showing various duplicated clips

Attached Instance “A”

Manually Created Instance “X”

Attached Instance “B”

Manually Created Instance “Y”

Timeline Layer 2

Timeline Layer 1

Attached Instance “C”

Programmatically generated
clips attached to _root Duplicated Instance “D”

Duplicated Instance “E”

Duplicated Instance “F”

,ch13.7626  Page 344  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Movie and Instance Stacking Order | 345

document. For example, you can supplant the original document by loading a new
.swf file into _level0. Loading a new .swf file into _level1 visually obscures the
movie in _level0, but it does not remove it from the Player.

Figure 13-4 summarizes the relationships of the various stacks maintained by the
Flash Player.

Stacks and Order of Execution
The layering of movie clips and timeline layers affects code execution order. The
rules are as follows:

• Code on frames in different timeline layers always executes from top to bottom
(relative to the timeline panel).

Figure 13-4. The complete Flash Player content stack

FLASH PLAYER

Depth 2
Depth 1
Depth 0

La
ye

r 3

Instances attached to clips on Layer 3, or
duplicates thereof

Manually created instances

La
ye

r 2
Instances attached to clips on Layer 2, or

duplicates thereof

Manually created instances

La
ye

r 1

Instances attached to clips on Layer 1, or
duplicates thereof

Manually created instances

Programmatically
Generated

Content Stack*

Internal Layer
Stack

Depth 2
Depth 1
Depth 0

La
ye

r 3

Instances attached to clips on Layer 3, or
duplicates thereof

Manually created instances

La
ye

r 2

Instances attached to clips on Layer 2, or
duplicates thereof

Manually created instances

La
ye

r 1

Instances attached to clips on Layer 1, or
duplicates thereof

Manually created instances

Programmatically
Generated

Content Stack*

Internal Layer
Stack

Do
cu

m
en

t L
ev

el 
St

ac
k

_level1 (movie B.swf)

_level0 (movie A.swf)

* Contains instances attached to _root, or duplicates thereof

,ch13.7626  Page 345  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 13: Movie Clips

• When manually created instances are initially loaded, code in their timeline and
onLoad() event handlers executes according to the Load Order set in the Publish
Settings of a Flash document—either Bottom Up, which is the default, or Top
Down.

For example, suppose we have a timeline with two layers, top and bottom, where
top is above bottom in the layer stack. We place clip X on layer top and clip Y on
layer bottom. If the Load Order of the document is set to Bottom Up, then the
code in clip Y will execute before the code in clip X. If, on the other hand, the
Load Order of the document is set to Top Down, then the code in clip X will exe-
cute before the code in clip Y. This execution order applies only to the frame on
which X and Y appear for the first time.

• Once loaded, all instances of a movie are added to an execution order, which is
the reverse of the load order; the last instance added to the movie is always the
first to have its code executed.

Use caution when relying on these rules. Layers are mutable, so you should avoid
producing code that relies on their relative position. Strive to create code that exe-
cutes safely without relying on the execution order of the clips in the stack. We can
avoid some of the issues presented by the execution stack by keeping all our code on
a scripts layer at the top of each code-bearing timeline.

Referring to Instances and Main Movies
In earlier sections of this chapter, we saw how to create and layer movie clip
instances and external .swf files in the Flash Player. We must be able to refer to that
content in order to effectively control it with ActionScript.

We refer to instances and main movies under four general circumstances, when we
want to:

• Get or set a property of a clip or a movie

• Create or invoke a method of a clip or a movie

• Apply some function to a clip or a movie

• Manipulate a clip or movie as data—for example, by storing it in a variable or
passing it as an argument to a function

While the circumstances under which we refer to clip instances and movies are fairly
simple, the tools we have for making references are many and varied. We’ll spend the
rest of this section exploring ActionScript’s instance- and movie-referencing tools.

Using Instance Names
Earlier, we saw that movie clips are referred to by their instance names. For example:

trace(someVariable);     // Refer to a variable
trace(someClip_mc);      // Refer to a movie clip

,ch13.7626  Page 346  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Referring to Instances and Main Movies | 347

In order to refer to an instance directly (as shown in the preceding trace() example),
the instance must reside on the timeline to which our code is attached. For example,
if we have an instance named clouds_mc placed on the main timeline of a document,
we can refer to clouds_mc from code attached to the main timeline, as follows:

// Set a property of the instance
clouds_mc._alpha = 60;
// Invoke a method on the instance
clouds_mc.play();
// Place the instance in an array of other related instances
var background = [clouds_mc, sky_mc, mountains_mc];

If the instance we want to reference does not reside on the same timeline as our code,
we must use a more elaborate syntax, as described later in this section under “Refer-
ring to Nested Instances.”

Referring to the Current Instance or Movie
We don’t always have to use an instance’s name when referring to a clip. Code
attached to a frame in an instance’s timeline can refer to that instance’s properties
and methods directly, without any instance name.

For example, to set the _alpha property of a clip named cloud_mc, we can place the
following code on a frame in the cloud_mc timeline:

_alpha = 60;

Similarly, to invoke the play() method on cloud_mc from a frame in the cloud_mc
timeline, we can simply use:

play( );

This technique can be used on any timeline, including timelines of main movies. For
example, the following two statements are synonymous if attached to a frame on the
main timeline of a Flash document. The first refers to the main movie implicitly,
whereas the second refers to the main movie explicitly via the global _root property:

gotoAndStop(20);
_root.gotoAndStop(20);

However, not all methods can be used with an implicit reference to a movie clip. Any
movie clip method that has the same name as a corresponding global function, such
as duplicateMovieClip() or unloadMovie(), must be invoked with an explicit instance
reference. Hence, when in doubt, use an explicit reference. We’ll have more to say
about method and global function conflicts later in in this chapter under “Method
Versus Global Function Overlap Issues.”

Note that it’s always safest to use explicit references to variables or movie clips rather
than using implicit references. Implicit references are ambiguous, often causing
unexpected results and confusing other developers reading your code.

,ch13.7626  Page 347  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 13: Movie Clips

Self-references with the this keyword

When we want to refer explicitly to the current instance from a frame in its timeline
or from one of its event handlers, we can use the this keyword. For example, the fol-
lowing statements are synonymous when attached to a frame in the timeline of our
cloud_mc instance:

_alpha = 60;       // Implicit reference to the current timeline
this._alpha = 60;  // Explicit reference to the current timeline

There are three reasons to use this to refer to a clip even when we could legitimately
refer to the clip’s properties and methods directly.

• First, explicit references are easier for other developers to read, because they
make the intention of a statement unambiguous.

• Second, when used without an explicit instance reference, certain movie clip
methods are mistaken for global functions by the interpreter. If we omit the this
reference, the interpreter thinks we’re trying to invoke the analogous global
function and complains that we’re missing the target movie clip parameter. To
work around the problem, we use this, as follows:

this.duplicateMovieClip("newClouds_mc", 0);  // Invoke a method on an instance

// If we omit the this reference, we get an error
duplicateMovieClip("newClouds_mc", 0);       // Oops!

• Third, using this, we can conveniently pass a reference to the current timeline to
functions that operate on movie clips:

// Here's a function that manipulates clips
function moveClipTo (theClip, x, y) {
  theClip._x = x;
  theClip._y = y;
}

// Now let's invoke it on the current timeline
moveClipTo(this, 150, 125);

New and experienced object-oriented programmers alike, take note:
the meaning of this inside a method is a reference not to the current
timeline but to the object through which the method was invoked. If
an object’s method needs to refer to a specific movie clip, a reference
to that clip should be passed to the method as a parameter. See
Chapter 12 for details on using the this keyword inside methods.

Referring to Nested Instances
As we discussed in the introduction to this chapter, movie clip instances are often
nested inside of one another. That is, a clip’s canvas can contain an instance of
another clip, which can itself contain instances of other clips. For example, a game’s
spaceship clip can contain an instance of a blinkingLights clip or a burningFuel clip.
Or a character’s face clip can include separate eyes, nose, and mouth clips.

,ch13.7626  Page 348  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Referring to Instances and Main Movies | 349

Earlier, we saw briefly how we can navigate up or down from any point in the hierar-
chy of clip instances, much like you navigate up and down a series of subdirectories
on your hard drive. Let’s examine this in more detail and see some more examples.

Let’s first consider how to refer to a clip instance that is nested inside of the current
instance.

When a clip is placed on the timeline of another clip, it becomes a
property of that clip, and we can access it as we would access any
object property (with the dot operator).

For example, suppose we place clipB on the canvas of clipA. To access clipB from a
frame in clipA’s timeline, we use a direct reference to clipB:

clipB._x = 30;

We could also use an explicit reference, as in:

this.clipB._x = 30;

Now suppose clipB contains another instance, clipC. To refer to clipC from a frame
in clipA’s timeline, we access clipC as a property of clipB, like this:

clipB.clipC.play();
clipB.clipC._x = 20;

Beautiful, ain’t it? And the system is infinitely extensible. Because every clip instance
placed on another clip’s timeline becomes a property of its host clip, we can traverse
the hierarchy by separating the instances with the dot operator, like so:

clipA.clipB.clipC.clipD.gotoAndStop(5);

Now that we’ve seen how to navigate down the instance hierarchy, let’s see how we
navigate up the hierarchy to refer to the instance or movie that contains the current
instance. As we saw earlier, every instance has a built-in _parent property that refers
to the clip or main movie containing it. We use the _parent property like so:

theClip._ parent

where theClip is a reference to a movie clip instance. Recalling our recent example
with clipA on the main timeline, clipB inside clipA, and clipC inside clipB, let’s see
how to use _parent and dot notation to refer to the various clips in the hierarchy.
Assume that the following code is placed on a frame of the timeline of clipB:

_parent          // A reference to clipA
this             // An explicit relative reference to clipB (the current clip)
this._parent     // An explicit relative reference to clipA
// Sweet Sheila, I love this stuff! Let's try some more...
_parent._parent  // A reference to clipA's parent (clipB's grandparent),
                 // which is the main timeline in this case

Note that although it is legal to do so, it is unnecessarily roundabout to traverse
down the hierarchy using a reference to the clipC property of clipB only to traverse

,ch13.7626  Page 349  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 13: Movie Clips

back up the hierarchy using _parent. These roundabout references are unnecessary
but do show the flexibility of dot notation:

clipC._parent                  // A roundabout reference to clipB
                               // (the current timeline)
clipC._parent._parent._parent  // A roundabout reference to the main timeline

Notice how we use the dot operator to descend the clip hierarchy and
use the _parent property to ascend it.

If this is new to you, you should probably build the clipA, clipB, clipC hierarchy in
Flash and test the code in our example. Proper instance referencing is one of the fun-
damental skills of a good ActionScript programmer.

Note that the hierarchy of clips is like a family tree. Unlike a typical family tree of a
sexually reproducing species, in which each offspring has two parents, our clip fam-
ily tree expands asexually. That is, each household is headed by a single parent who
can adopt any number of children. Any clip (i.e., any node in the tree) can have one
and only one parent (the clip that contains it) but can have multiple children (the
clips that it contains). Of course, each clip’s parent can in turn have a single parent,
which means that each clip can have only one grandparent (not the four grandpar-
ents humans typically have). Figure 13-5 shows a sample clip hierarchy.

No matter how far you go down the family tree, if you go back up the same number
of steps you will always end up in the same place you started. It is therefore pointless
to go down the hierarchy only to come back up. However, it is not pointless to go up
the hierarchy and then follow a different path back down. For example, suppose that
our example main timeline also contains clipD, which makes clipD a “sibling” of

Figure 13-5. A sample clip hierarchy

MAIN TIMELINE
_root

clipD clipA

clipB

clipC

_root is:
clipA’s parent,
clipD’s parent

clipD is:
_root’s child,
clipA’s sibling

clipA is:
_root’s child,
clipB’s parent,

clipC’s grandparent,
clipD’s sibling

clipB is:
clipA’s child,

clipC’s parent

clipC is:
clipB’s child

clipA’s grandchild

,ch13.7626  Page 350  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Referring to Instances and Main Movies | 351

clipA because both have the main timeline as their _parent. In this case, you can refer
to clipD from a script attached to clipB as follows:

_parent._parent.clipD    // This refers to clipD, a child of the main
                         // timeline (clipA's _parent) and therefore
                         // a sibling of clipA

Note that the main timeline does not have a _parent property (main movies are the
top of any clip hierarchy and cannot be contained by another timeline); references to
_root._parent yield undefined.

Referring to Main Movies with _root and _leveln
Now that we’ve seen how to navigate up and down the clip hierarchy relative to the
current clip, let’s explore other ways to navigate along absolute pathways and even
among other documents stored in other levels of the Player’s document stack. In ear-
lier chapters, we saw how these techniques applied to variables and functions; here
we’ll see how they can be used to control movie clips.

Referencing the current level’s main movie using _root

When an instance is deeply nested in a clip hierarchy, we can repeatedly use the
_parent property to ascend the hierarchy until we reach the main movie timeline. But
in order to ease the labor of referring to the main timeline from deeply nested clips,
we can also use the built-in global property _root, which is a shortcut reference to
the main movie timeline. For example, here we play the main movie:

_root.play();

The _root property is said to be an absolute reference to a known point in the clip
hierarchy because unlike the _parent and this properties, which are relative to the
current clip, the _root property refers to the main timeline of the current level, no
matter which clip within the hierarchy references it (see the exception in the next
warning). These are all equivalent (except from scripts attached to the main time-
line, where _parent is not valid):

_parent._root
this._root
_root

Therefore, you can use _root when you don’t know where a given clip is nested
within the hierarchy. For example, consider the following hierarchy in which circle
is a child of the main movie timeline and square is a child of circle:

main timeline
   circle
     square

Now consider this script attached to a frame in both circle and square:

_parent._x += 10  // Move this clip's parent clip 10 pixels to the right

,ch13.7626  Page 351  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 13: Movie Clips

When this code is executed from within circle, it causes the main movie to move 10
pixels to the right. When it is executed from within square, it causes circle (not the
main movie) to move 10 pixels to the right. In order for the script to move the main
movie 10 pixels regardless of where the script is executed from, the script can be
rewritten as:

_root._x += 10   // Move the main movie 10 pixels to the right

Furthermore, the _parent property is not valid from within the main timeline; the
version of the script using _root is valid even when used in a frame of the main
timeline.

The _root property can be combined with ordinary instance references to descend a
nested-clip hierarchy:

_root.clipA.clipB.play( );

References that start with _root refer to the same, known, starting point from any-
where in a document. There’s no guessing required.

When a .swf file is loaded into a movie clip instance, _root refers no
longer to that .swf file’s main timeline but to the main timeline of the
movie into which the .swf was loaded!

If you know your movie will be loaded into a movie clip, you should not use _root to
refer to the main timeline. Instead, define a global reference to the main timeline by
placing the following code on your movie’s main timeline:

_global.myAppMain = this;

where myApp is the name of your application and Main is used, by convention, to
denote the main timeline. Then use myAppMain in place of _root.

Referencing other documents in the Player using _leveln

If we have loaded multiple .swf files into the document stack of the Flash Player
using loadMovie(), we can refer to the main movie timelines of the various docu-
ments using the built-in series of global properties _level0 through _leveln, where n
represents the level of the document we want to reference.

Therefore, _level0 represents the document in the lowest level of the document
stack (documents in higher levels will be rendered in the foreground). Unless a movie
has been loaded into _level0 via loadMovie(), _level0 is occupied by the movie that
was initially loaded when the Player started.

Here is an example that plays the main movie timeline of the document in level 3 of
the Player’s document stack:

_level3.play();

,ch13.7626  Page 352  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Referring to Instances and Main Movies | 353

Like the _root property, the _leveln property can be combined with ordinary
instance references via the dot operator:

_level1.clipA.stop();

As with references to _root, references to _leveln properties are called absolute refer-
ences because they lead to the same destination from any point in a document.

Note that _leveln and _root are not synonymous. The _root property is always the
current document’s main timeline, regardless of the level on which the current docu-
ment resides, whereas the _leveln property is a reference to the main timeline of a
specific document level. For example, suppose we place the code _root.play() in
myMovie.swf. When we load myMovie.swf onto level 5, our code plays _level5’s
main movie timeline. In contrast, if we place the code _level2.play() in myMovie.swf
and load myMovie.swf into level 5, our code plays _level2’s main movie timeline, not
_level5’s. Of course, from within level 2, _root and _level2 are equivalent.

Authoring Instance References with Insert Target Path
When the instance structure of a movie gets very complicated, composing references
to movie clips and main movies can be laborious. We may not always recall the exact
hierarchy of a series of clips and, hence, may end up frequently selecting and editing
clips in the authoring tool just to determine their nested structure. The Actions
panel’s Insert Target Path tool generates clip references visually, relieving the burden
of creating them manually. The Insert Target Path button is shown in Figure 13-6.

To use Insert Target Path, follow these steps:

1. Position the cursor in your code where you want a clip reference to be inserted.

2. Click the Insert Target Path button, shown in Figure 13-6.

3. In the Insert Target Path dialog box, select the clip to which you want to refer.

Figure 13-6. The Insert Target Path button

Insert Target Path button

,ch13.7626  Page 353  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 13: Movie Clips

4. Choose whether to insert an absolute reference, which begins with _root, or a rel-
ative reference, which expresses the reference to the target clip in relation to the
clip that contains your code (this).

5. If you are exporting to Flash 4 format, choose the Slashes Notation button for
Flash 4 compatibility. (The Dot Notation button, selected by default, composes
references that won’t work in Flash 4).

The Insert Target Path tool cannot generate relative references that ascend a hierar-
chy of clips. That is, the tool cannot be used to refer to a clip that contains the cur-
rent clip (unless you want to begin the path from _root and proceed downward). To
create references that ascend the clip hierarchy, we must either use absolute refer-
ences starting with _root (which therefore become descending references) or manu-
ally enter the appropriate relative references in our code using the _parent property.

Dynamic References to Clip Objects
Normally, we know the name of the specific instance or movie we are manipulating,
but there are times when we’d like to control a clip whose name we don’t know. We
may, for example, want to scale down a whole group of clips using a loop or create a
button that refers to a different clip each time it is clicked. To handle these situa-
tions, we must create our clip references dynamically at runtime.

Using the array-element access operator

As we saw in Chapter 5 and Chapter 12, the properties of an object can be retrieved
via the dot operator or through the array-element access operator, [ ]. For example,
the following two statements are equivalent:

someObject.myProperty = 10;
someObject["myProperty"] = 10;

The array-element access operator has one important feature that the dot operator
does not; it lets us (indeed requires us to) refer to a property using a string expression
rather than an identifier. For example, here’s a string concatenation expression that
acts as a valid reference to the property propertyX:

someObject["prop" + "ertyX"];

We can apply the same technique to create our instance and movie references
dynamically. We already saw that clip instances are stored as properties of their par-
ent clips. Earlier, we used the dot operator to refer to those instance properties. For
example, from the main timeline we can refer to clipB—which is nested inside of
another instance, clipA—as follows:

clipA.clipB;                      // Refer to clipB inside clipA
clipA.clipB.stop();               // Invoke a method on clipB

Because instances are properties, we can also legitimately refer to them with the [ ]
operator, as in:

,ch13.7626  Page 354  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Referring to Instances and Main Movies | 355

clipA["clipB"];                   // Refer to clipB inside clipA
clipA["clipB"].stop();            // Invoke a method on clipB

Notice that when we use the [ ] operator to refer to clipB, we provide the name of
clipB as a string, not an identifier. That string reference can be any valid string-
yielding expression. For example, here’s a reference to clipB that involves a string
concatenation:

var clipCount = "B";
clipA["clip" + clipCount];         // Refer to clipB inside clipA
clipA["clip" + clipCount].stop();  // Invoke a method on clipB

We can create clip references dynamically to refer to a series of sequentially named
clips:

// Here's a loop that stops clip1, clip2, clip3, and clip4
for (var i = 1; i <= 4; i++) {
  _root["clip" + i].stop( );
}

Now that’s powerful!

Storing references to clips in data containers

We began this chapter by saying that though movie clips are technically their own
datatype, they are treated as objects in ActionScript. Hence, we can store a reference
to a movie clip instance in a variable, an array element, or an object property.

Recall our earlier example of a nested instance hierarchy (clipC nested inside clipB
nested inside clipA) placed on the main timeline of a document. If we store these var-
ious clips in data containers, we can control them dynamically using the containers
instead of explicit references to the clips. Example 13-2, which shows code that is
placed on a frame in the main timeline, uses data containers to store and control
instances.

By storing clip references in data containers, we can manipulate the clips (such as
playing, rotating, or stopping them) without knowing or affecting the document’s
clip hierarchy. Storing clip references in variables also make our code more legible.
You can use a shorter, simpler variable name instead of a lengthy absolute or relative
path through the movie clip hierarchy.

Example 13-2. Storing clip references in variables and arrays

var x = clipA.clipB;   // Store a reference to clipB in the variable x
x.play();              // Play clipB
// Now let's store our clips in the elements of an array
var theClips = [clipA, clipA.clipB, clipA.clipB.clipC];
theClips[0].play();    // Play clipA
theClips[1]._x = 200;  // Place clipB 200 pixels from clipA's registration point
// Stop all the clips in our array using a loop
for (var i = 0; i < myClips.length; i++) {
  myClips[i].stop();
}

,ch13.7626  Page 355  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 13: Movie Clips

Using for-in to access movie clips

In Chapter 8, we saw how to enumerate an object’s properties using a for-in loop.
Recall that a for-in loop’s iterator variable automatically cycles through all the prop-
erties of the object, so that the loop is executed once for each property:

for (var prop in someObject) {
  trace("the value of someObject." + prop + " is " + someObject[prop]);
}

Example 13-3 shows how to use a for-in loop to enumerate all the clips that reside on
a given timeline.

The for-in loop gives us convenient access to the clips contained by a specific clip
instance or main movie. Using for-in, we can control any clip on any timeline,
whether or not we know the clip’s name and whether the clip was created manually
or programmatically.

Example 13-4 shows a recursive version of Example 13-3. It finds all the clip
instances on a timeline, plus the clip instances on all nested timelines.

For more information on recursion, see “Recursive Functions” in Chapter 9.

Example 13-3. Finding movie clips on a timeline

for (var property in someClip) {
  // Check if the current property of someClip is a movie clip
  if (typeof someClip[property] = = "movieclip") {
    trace("Found instance: " + someClip[property]._name);
    // Now do something to the clip
    someClip[property]._x = 300;
    someClip[property].play( );
  }
}

Example 13-4. Finding all movie clips on a timeline recursively

function findClips (theClip, indentSpaces) {
  // Use spaces to indent the child clips on each successive tier
  var indent = " ";
  for (var i = 0; i < indentSpaces; i++) {
    indent += " ";
  }
  for (var property in theClip) {
    // Check if the current property of theClip is a movie clip
    if (typeof theClip[property] = = "movieclip") {
      trace(indent + theClip[property]._name);
      // Check if this clip is parent to any other clips
      findClips(theClip[property], indentSpaces + 4);
    }
  }
}
findClips(_root, 0); // Find all clip instances descended from main timeline

,ch13.7626  Page 356  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Referring to Instances and Main Movies | 357

The _name property

As we saw earlier in this chapter under “Movie Clip Instance Names,” every
instance’s name is stored as a string in the built-in property _name. We can use that
property, as we saw in Example 13-1, to determine the name of the current clip or
the name of some other clip in an instance hierarchy:

this._name;        // The current instance's name
_parent._name      // The name of the clip that contains the current clip

The _name property comes in handy when we want to perform conditional opera-
tions on clips according to their identities. For example, here we duplicate the
seedClip clip when it loads:

onClipEvent (load) {
  if (this._name = = "seedClip") {
    this.duplicateMovieClip("clipCopy", 0);
  }
}

By checking explicitly for the seedClip name, we prevent infinite recursion—with-
out our conditional statement, the load handler of each duplicated clip would cause
the clip to duplicate itself.

The _target property

Every movie clip instance has a built-in _target property, which is a string that speci-
fies the clip’s absolute path using the deprecated Flash 4 “slash” notation. For exam-
ple, if clipB is placed inside clipA, and clipA is placed on the main timeline, the
_target property of these clips is as follows:

_root._target                    // Contains: "/"
_root.clipA._target              // Contains: "/clipA"
_root.clipA.clipB._target        // Contains: "/clipA/clipB"

The targetPath( ) function

The targetPath() function returns a string that contains the clip’s absolute reference
path, expressed using dot notation. The targetPath() function is the modern, object-
oriented equivalent of _target. It takes the form:

targetPath(theClip)

where theClip is the identifier of the clip whose absolute reference we wish to
retrieve. Here are some examples, using our familiar example hierarchy:

targetPath(_root);              // Contains: "_level0"
targetPath(_root.clipA);        // Contains: "_level0.clipA"
targetPath(_root.clipA.clipB);  // Contains: "_level0.clipA.clipB"

The targetPath() function gives us the complete path to a clip, whereas the _name
property gives us only the name of the clip. (This is analogous to having a complete
file path versus just the filename.) So, we can use targetPath() to compose code that

,ch13.7626  Page 357  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 13: Movie Clips

controls clips based not only on their name but also on their location. For example,
we might create a generic navigational button that, by examining its targetPath(),
sets its own color to match the section of content within which it resides. See the
example under the Selection object in the Language Reference for a demonstration of
targetPath() in action.

Removing Clip Instances and Main Movies
We’ve seen how to create and refer to movie clips; now let’s see how to turn them
into so many recycled electrons (in other words, blow ’em away).

The manner in which we create an instance or a movie determines the technique we
use to remove that instance or movie later. We can remove movies and instances
explicitly using unloadMovie() and removeMovieClip(). Additionally, we can evict a
clip implicitly by using loadMovie(), attachMovie(), or duplicateMovieClip() to place
a new clip in its stead. Let’s look at these techniques individually.

Using unloadMovie( ) with Instances and Levels
The built-in unloadMovie() function can remove any clip instance or main movie—
both those created manually and those created via loadMovie(), duplicateMovieClip(),
and attachMovie(). It can be invoked either as a global function or as a instance-level
method:

unloadMovie(clipOrLevel);   // Global function
clipOrLevel.unloadMovie( );  // Method

In the global function form of unloadMovie(), clipOrLevel is a string indicating the
path to the clip or level to unload. Because movie clips are converted to paths when
used as strings, clipOrLevel can also be a movie clip reference. In the method form of
unloadMovie(), clipOrLevel must be a reference to a movie clip object. The exact
behavior of unloadMovie() varies according to whether it is used on a level or an
instance.

Using unloadMovie( ) with levels

When applied to a level in the document stack (e.g., _level0, _level1, or _level2),
unloadMovie() completely removes the target level and the movie that the level con-
tains. Subsequent references to the removed level yield undefined. Removing docu-
ment levels is the most common use of the unloadMovie() function:

unloadMovie("_level1");
_level1.unloadMovie();

Using unloadMovie( ) with instances

When applied to an instance (whether the instance is manually or programmatically
created), unloadMovie() removes the contents of the clip, but it does not remove the

,ch13.7626  Page 358  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Removing Clip Instances and Main Movies | 359

clip itself! The timeline and canvas of the clip are removed, but an empty shell
remains on stage. That shell can be referenced until the instance is removed perma-
nently via removeMovieClip() or until the span of frames on which the instance
resides ends. Furthermore, any onClipEvent() handlers on the shell remain active.

This “partial” deletion of the instance presents an interesting possibility; it lets us
maintain a generic container clip whose contents can be changed repeatedly via
loadMovie() and unloadMovie(). For example, we could use a single clip to load sec-
tions of a web site or images in a photo album. The following series of statements
demonstrates the technique with an instance called clipA (though in a real applica-
tion, these statements would include the appropriate preloader code):

clipA.loadMovie("section1.swf");  // Load a document into clipA
clipA.unloadMovie( );              // Unload the document, leaving clipA intact
clipA.loadMovie("section2.swf");  // Load another document into clipA

One note of caution with this approach: when used on an instance, unloadMovie()
removes all custom properties of the clip contained by the instance. Physical
properties—such as _x and _alpha—persist, but custom variables, functions, and
event handler callbacks are lost.

If you use the global function form of unloadMovie() with a nonexist-
ent clip or level instance as its argument, the clip from which you
invoked the unloadMovie() function will, itself, unload.

For example, if _level1 is undefined, and we issue the following code from the main
timeline of _level0, then _level0 will unload:

unloadMovie(_level1);

Yes, there’s some logic to this behavior, but we’ll cover that later in this chapter
under “Method Versus Global Function Overlap Issues.” You can avoid the problem
by using a string when specifying the clipOrLevel argument of unloadMovie() or by
checking explicitly that clipOrLevel exists before unloading it. Here’s an example of
each approach:

unloadMovie("_level1");  // clipOrLevel specified as a string
if (_level1) {           // Explicit check to make sure level exists
  unloadMovie(_level1);
}

Using removeMovieClip( ) to Delete Instances
To delete instances created via duplicateMovieClip(), attachMovie() or
createEmptyMovieClip(), we can use removeMovieClip(). We delete an instance when
it is no longer needed in our application, such as when an enemy spaceship is
destroyed or an alert window is closed. Note that removeMovieClip() works on
duplicated or attached instances only. It cannot delete a manually created instance or

,ch13.7626  Page 359  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 13: Movie Clips

a main movie. Like unloadMovie(), removeMovieClip() can be used in both method
and global function form (though the syntax is different, the effect is the same):

removeMovieClip(theClip)    // Global function
theClip.removeMovieClip()   // Method

In the global function form of removeMovieClip(), theClip is a string indicating the
path to the clip to remove. Because movie clips are converted to paths when used as
strings, theClip can also be a movie clip reference. In the method form of
removeMovieClip(), theClip must be a reference to a movie clip object.

Unlike using unloadMovie(), deleting an instance via removeMovieClip() completely
obliterates the entire clip object, leaving no shell or trace of the clip and its proper-
ties. When we execute theClip.removeMovieClip(), future references to theClip yield
undefined.

Removing Manually Created Instances Manually
Clip instances created manually in the Flash authoring tool have a limited life span—
they are removed when the playhead enters a keyframe that does not include them.
Hence, manually created movie clips live in fear of the almighty blank keyframe.

Remember that when a movie clip disappears from the timeline, it ceases to exist as a
data object. All variables, functions, methods, and properties that have been defined
inside it are lost. Therefore, if we want a clip’s information or functions to persist, we
should be careful about removing the clip manually, and we should ensure that the
span of frames on which the clip resides extends to the point where we need that
clip’s information. (In fact, to avoid this worry entirely, we should attach most per-
manent code to a frame in the main movie timeline or to the _global object.) To hide
a clip while it’s present on the timeline, simply set the clip’s _visible property to
false. Setting a clip’s _x property to a very large positive number or very small nega-
tive number will also hide it from the user’s view, but this approach is discouraged
because the clip is still rendered off screen, consuming resources.

Method Versus Global Function
Overlap Issues
As we’ve mentioned several times during this chapter, some movie clip methods have
the same name as equivalent global functions. You can see this for yourself in the
Flash authoring tool. Open the Actions panel, make sure you’re in Expert Mode, and
then take a look in the Actions folder under Movie Control and Movie Clip Control.
You’ll see a list of Actions, including gotoAndPlay(), gotoAndStop(), nextFrame(),
and unloadMovie(). These Actions are also available as movie clip methods. The
duplication is not purely a matter of categorization; the Actions are global functions,
fully distinct from the corresponding movie clip methods.

,ch13.7626  Page 360  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Method Versus Global Function Overlap Issues | 361

So, when we execute:

theClip.gotoAndPlay(5);

we’re accessing the movie clip method named gotoAndPlay(). But when we execute:

gotoAndPlay(5);

we’re accessing the global function called gotoAndPlay(). These two commands have
the same name, but they are not the same thing. The gotoAndPlay() global function
operates on the current instance or movie. The gotoAndPlay() method operates on
the clip object through which it is invoked. Most of the time, this subtle difference is
of no consequence. But for some overlapping method/function pairs, this difference
is potentially quite vexing.

Some global functions require a target parameter that specifies the clip on which the
function should operate. This target parameter is not required by the comparable
clip methods because the methods automatically operate on the clips through which
they are invoked. For example, in its method form, unloadMovie() works like this:

theClip.unloadMovie();

As a method, unloadMovie() is invoked without parameters, and it automatically
affects theClip. But in its global function form, unloadMovie() works like this:

unloadMovie(target);

The global function version of unloadMovie() requires target as a parameter that
specifies which movie to unload. Why should this be a problem? Well, the first rea-
son is that we may mistakenly expect to be able to unload the current document by
using the global version of unloadMovie() without any parameters, as we’d use
gotoAndPlay() without parameters:

unloadMovie();

This format does not unload the current clip. It causes a “Wrong number of parame-
ters” error. The second reason that target parameters in global functions can cause
problems is a little more complex and can be quite a pain to track down if you’re not
expecting it. To supply a target clip to a global function that requires a target
parameter, we can use either a string, which expresses the path to the clip we wish to
affect, or a clip reference. For example:

unloadMovie(_level1);    // Target clip is a reference
unloadMovie("_level1");  // Target clip is a string

We can use a reference simply because references to clip objects are
converted to movie clip paths when used in a string context. This is
simple enough, but if the target parameter resolves to an empty string
or an undefined value, the function operates on the current timeline!

These examples demonstrate how an incorrect target clip reference can unintention-
ally unload the current timeline:

,ch13.7626  Page 361  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 13: Movie Clips

unloadMovie(x);   // If x doesn't exist, x yields undefined, so
                  // the function operates on the current timeline
unloadMovie("");  // The target is the empty string, so the function operates
                  // on the current timeline

This can cause some quite unexpected results. Consider what happens if we refer to
a level that doesn’t exist:

unloadMovie(_level1);

If _level1 is empty, the interpreter resolves the reference as though it were an unde-
clared variable. This yields undefined, so the function operates on the current time-
line, not _level1! So, how do we accommodate this behavior? There are a few
options. We can check for the existence of our target before executing a function on
it:

if (_level1) {
  unloadMovie(_level1);
}

Or, we can choose to always use a string to indicate the path to our target. If the path
specified in our string does not resolve to a real clip, the function fails silently:

unloadMovie("_level1");

In some cases, we can use the equivalent numeric function for our operation:

unloadMovieNum(1);

Finally, we can choose to avoid the issue altogether by always using  clip methods:

_level1.unloadMovie();

For reference, here are the troublemakers (the ActionScript global functions that take
target parameters):

duplicateMovieClip()
loadMovie()
loadVariables()
print()
printAsBitmap()
removeMovieClip()
startDrag()
unloadMovie()

If you’re experiencing unexplained problems in a movie, you may want to check this
list to see if you’re misusing a global function. When passing a clip reference as a
target parameter, be sure to double-check your syntax.

Drawing in a Movie Clip at Runtime
Flash MX introduces the ability to draw strokes, curves, shapes, and fills in a movie
clip using the Drawing API, a collection of methods for drawing at runtime. The

,ch13.7626  Page 362  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Drawing in a Movie Clip at Runtime | 363

Drawing API methods are documented in the Language Reference, under the follow-
ing entries:

MovieClip.beginFill()
MovieClip.beginGradientFill()
MovieClip.clear()
MovieClip.curveTo()
MovieClip.endFill()
MovieClip.lineStyle()
MovieClip.lineTo()
MovieClip.moveTo()

The Drawing API uses the concept of a drawing pen (or simply pen) to refer to the
current drawing position, similar to the drawing pen used in old line plotters. Ini-
tially, the drawing pen resides at the registration point of a movie clip. Using the
drawing methods, we can:

• Move the pen without drawing any lines or fills, via MovieClip.moveTo()

• Draw a straight line from the pen’s current position to a specific point, via
MovieClip.lineTo()

• Draw a curved line from the pen’s current position to a specific point, via
MovieClip.curveTo()

• Draw a shape, via MovieClip.beginFill() and MovieClip.endFill() or MovieClip.
beginGradientFill() and MovieClip.endFill().

Before, during, or after drawing, we can specify the characteristics of the drawing
stroke used in any drawing operation, via MovieClip.lineStyle(). To remove a draw-
ing, we use MovieClip.clear().

Notice that the Drawing API does not include methods for drawing shapes such as a
triangle, rectangle, or circle. We must draw these using the primitive drawing meth-
ods, as demonstrated under MovieClip.beginFill() in the Language Reference.

Detailed coverage of the drawing methods is left to the Language Reference. For now,
let’s take a look at a couple of examples showing the general use of the Drawing API.

Example 13-5 creates a 100-pixel–long, 2-pixel–thick, straight line extending to the
right from the current clip’s registration point.

Example 13-6 creates a 200-pixel–wide, red square centered on the current clip’s reg-
istration point.

Example 13-5. Drawing a straight line

// Set stroke to 2-point
this.lineStyle(2);
// Draw the line
this.lineTo(100,0);

,ch13.7626  Page 363  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 13: Movie Clips

For a variety of interesting applications of the Drawing API (including drawing arcs,
polygons, dashed lines, stars, and wedges), see:

http://www.formequalsfunction.com/downloads/drawmethods.html

Using Movie Clips as Buttons
As of Flash Player 6, movie clips (but not main movies) have all the features previ-
ously reserved for button symbols. A movie clip can dynamically define and redefine
button event handlers, a hit region, and Up, Over, and Down states; and, unlike but-
ton symbols, movie clips can be instantiated dynamically at runtime. If you are
implementing simple interactivity at authoring time, you can continue to use button
symbols happily. But if you are generating complex, dynamic button behavior at
runtime, you’ll want to use movie clips.

The first step in implementing button-like behaviors for a movie clip is to define one
or more button events for the clip. Normally, this means assigning a callback func-
tion to a predefined button event property (shown next), but the on(event) button
syntax can also be applied to a movie clip directly in the authoring tool. The follow-
ing code creates a movie clip, adds a text field to it, and then defines the onRelease()
button event handler:

// Create clip
this.createEmptyMovieClip("submit_mc", 1);

// Add text field
this.submit_mc.createTextField("submit_txt", 1, 0, 0, 50, 20);
this.submit_mc.submit_txt.text = "Submit";

// Define button handler
this.submit_mc.onRelease = function ( ) {
  trace("You pressed the submit button.");
}

As is, this movie clip operates perfectly well as a button. But suppose we want to
make the word “Submit” easier for users to click. To define a larger hit area (the

Example 13-6. Drawing a square

// Set stroke to 3-point
this.lineStyle(3);
// Move the pen to 100 pixels left and above the registration point
this.moveTo(-100,-100);
// Start our red square shape
this.beginFill(0xFF0000);
// Draw the lines of our square
this.lineTo(100, -100);
this.lineTo(100, 100);
this.lineTo(-100, 100);
this.lineTo(-100, -100);
// Close our red square shape
this.endFill( );

,ch13.7626  Page 364  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Using Movie Clips as Buttons | 365

region that activates the button) for our movie clip, we’ll create a separate hit area
movie clip as follows:

1. Create a movie clip the size of the desired hit area.

2. Conceal the hit area movie clip by setting its _visible property to false.

3. Assign the hit area movie clip to the hitArea property of the clip with the button
events.

The movie clip that acts as the hit area can reside on any timeline, but it is normally
placed inside the clip with the button events so that the hit area moves and scales
with its parent. For example, the following code uses the Drawing API to create a hit
area movie clip larger than the word “Submit”:

// Create hit_mc inside submit_mc
this.submit_mc.createEmptyMovieClip("hit_mc", 0);

// Draw a rectangle in hit_mc
this.submit_mc.hit_mc.moveTo(-30,-15);
this.submit_mc.hit_mc.beginFill(0xFF0000);
this.submit_mc.hit_mc.lineTo(80, -15);
this.submit_mc.hit_mc.lineTo(80, 35);
this.submit_mc.hit_mc.lineTo(-30, 35);
this.submit_mc.hit_mc.lineTo(-30, -15);
this.submit_mc.hit_mc.endFill( );

// Hide the hit area movie clip
this.submit_mc.hit_mc._visible = false;

// Set hit_mc as submit_mc's hit area
this.submit_mc.hitArea = this.submit_mc.hit_mc;

So far, our example does not change visually when the mouse is pressed or moved
over the Submit button. Using ActionScript, visual changes to a button can be imple-
mented dynamically within each button event handler. For example, we can bold the
word “Submit” from our submit_mc’s onRollOver() event as follows:

// Bold text on roll over
this.submit_mc.onRollOver = function ( ) {
  this.submit_txt.setTextFormat(new TextFormat(null, null, null, true));
}

// Normal text on roll out
this.submit_mc.onRollOut = function ( ) {
  this.submit_txt.setTextFormat(new TextFormat(null, null, null, false));
}

Alternatively, if we are creating our movie clip in the authoring tool, we can define
button-state visual changes by creating keyframes with the special labels _up, _over,
and _down, corresponding to the button states Up (mouse is not over the button),
Over (mouse is over the button), and Down (button is being pressed). (Use the Prop-
erty inspector to assign a label to a keyframe.) When the mouse interacts with the
movie clip, Flash automatically moves the clip’s playhead to the appropriately

,ch13.7626  Page 365  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 13: Movie Clips

labeled frame. For example, when the mouse moves over the clip, Flash performs the
equivalent of this:

theClip.gotoAndStop("_over");

At each of the labeled button-state frames, we can issue a play() command to create
animated button effects. However, we must be sure to also issue a stop() command
on frame 1 of the movie clip, which prevents the movie from playing through all its
button states. Normally, this first frame is labeled _up (the default inactive state for
the button).

Movie clips with button events can also use the button properties enabled (used to
toggle button behavior on and off), useHandCursor (used to prevent or enable changes
to the mouse pointer when it is over the button), and trackAsMenu (used to modify
the button’s onRelease() handler requirements, enabling menu-style behavior). For
example, we can suppress the display of the hand mouse pointer for our submit_mc
clip as follows:

submit_mc.useHandCursor = false;

Typical web browser Submit buttons do not show a hand pointer on rollover. For
deeper discussion of the button properties available to movie clips, see the MovieClip
class in the Language Reference.

Nested button behavior is not supported for movie clips. That is, movie clips inside a
movie clip with button behavior cannot themselves define button behaviors. Further-
more, if a mask and a masked movie clip both define button handlers, only the mask
movie clip’s button handlers are activated.

The various types of event handlers for buttons and movie clips have important
scope differences, which are discussed in Chapter 10 under “Event Handler Scope”
and summarized in Table 10-1.

Input Focus and Movie Clips
As of Flash Player 6, movie clips instances (but not main movies) can receive key-
board input focus, allowing them to be controlled by keystrokes, much like a button
object is controlled. Input focus is most commonly used by components that take
input in complex graphical user interfaces. For example, a list box can allow the user
to scroll through its items via the up and down arrow keys. The Enter key activates
the selected item.

Generally speaking, if a keyboard-driven action is not tied directly to a
specific movie clip, you should use the Key object’s listener events—
not movie clips with input focus—to trap the keystrokes. See Key in
the Language Reference.

,ch13.7626  Page 366  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Input Focus and Movie Clips | 367

Despite what you might assume, movie clips do not receive keyboard input focus
when they are clicked. Instead, they receive focus either due to the Tab key being
pressed or, programmatically, by using the setFocus() method. To allow a movie clip
to receive input focus programmatically, we must explicitly set its focusEnabled
property to true. In contrast, movie clips with button handlers can always receive
input focus, even when focusEnabled is false. Once focusEnabled is true for a clip,
we can focus the clip programmatically with Selection.setFocus(). The user can also
focus the clip with the Tab key, provided that the movie clip’s tabEnabled property is
true. The movie clip’s position in the tab order is dictated by its tabIndex property.

When a movie clip has input focus, its onKeyUp() and onKeyDown() event handlers
become active in their callback-function form. From these handlers, we can imple-
ment keyboard-specific behaviors, such as expanding a hierarchical menu when the
right arrow key is pressed or jumping to the nearest item in a list when a letter is
pressed.

We can detect when a movie clip gains and loses input focus via the onSetFocus()
and onKillFocus() events, defined both by the MovieClip class and the Selection
object.

By default, keyboard focus is indicated by a yellow rectangle. The highlight is useful
for debugging the tab order, but it may not be visually appealing. To remove the yel-
low rectangle, set the MovieClip._focusrect property to false. If you do this, you
should give the end user some indicator as to which screen element has keyboard
focus at runtime. To do so, use the clip’s onSetFocus() and onKillfocus() handlers, as
shown in the next example, to toggle some indicator of focus.

In Flash Player 6, moving the mouse while a movie clip or button has
focus removes focus from that clip or button.

The following simplified code shows how an item in a shopping basket might
respond to being focused and deleted via the X key. In a real application, the behav-
ior would most likely be implemented at the class level rather than on a specific
movie clip instance. The doHighlight() and doRemoveHighlight() methods are left as
an exercise for the reader. You might use those handlers to jump the playhead to a
label that shows or hides some focus indicator, such as the dotted line or thick bor-
der typically seen around the button with focus in Windows or Macintosh dialog
boxes.

// Allow user to focus item_mc via Tab key
item_mc.tabEnabled = true;

// Allow Selection.setFocus() to focus item_mc
item_mc.focusEnabled = true;

,ch13.7626  Page 367  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 13: Movie Clips

// Highlight item_mc when it is focused
item_mc.onSetFocus = function ( ) {
  this.doHighlight( );
}

// Remove highlight from item_mc when it loses focus
item_mc.onKillFocus = function ( ) {
  this.doRemoveHighlight( );
}

// Remove item_mc when "x" is pressed and item_mc has focus
item_mc.onKeyDown = function ( ) {
  if (Key.getCode( ) = = 88) {  // The keycode for "x" is 88
    this.removeMovieClip( );
  }
}

For much more information on movie clip input focus, consult the Language Refer-
ence entries for the properties and methods discussed in this section.

Building a Clock with Clips
Now that you’ve learned the fundamentals of movie clip programming, let’s put this
knowledge to use by creating a sample analog clock application, which exemplifies
the typical role of movie clips as basic content containers. See also the various ver-
sions of the multiple-choice quiz posted at the online Code Depot.

In this chapter we saw how to create movie clips with attachMovie() and how to set
movie clip properties with the dot operator. With these relatively simple tools and a
little help from the Date and Color classes, we have everything we need to make a
clock with functional hour, minute, and second hands.

First, we’ll make the face and hands of the clock using the following steps (notice
that we don’t place the parts of our clock on the main Stage—our clock will be gen-
erated entirely through ActionScript):

1. Create a new, empty Flash movie.

2. Create a movie clip symbol, named clockFace, that contains a 100-pixel-wide
black circle shape, centered on the clip’s registration point.

3. Create a movie clip symbol, named hand, that contains a 50-pixel-long, vertical
red line.

4. Select the line in hand; then choose Window ➝ Info (Flash MX) or Window ➝

Panels ➝ Info (Flash 5).

5. Because we want the hands to rotate around the center of the clock, we must
position the line so that one end is at the registration point (the center) of the
hand clip. Therefore, position the bottom of the line at the center of the clip by
setting the line’s x-coordinate to 0 and its y-coordinate to –50.

,ch13.7626  Page 368  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Building a Clock with Clips | 369

Now we have to export our clockFace and hand symbols, so that instances of them
can be attached dynamically to our movie:

1. In the Library, select the clockFace clip; then select Linkage from the pop-up
Options menu. The Linkage Properties dialog box appears.

2. Select the Export For ActionScript checkbox.

3. In the Identifier box, type clockFace, and then click OK.

4. Repeat Steps 1 through 3 to export the hand clip, giving it the identifier hand.

The face and hands of our clock are complete and ready to be attached to our movie.
Now let’s write the script that places the clock assets on stage and refreshes them
with each passing second:

1. Add the script shown in Example 13-7 to frame 1 of Layer 1 of the main time-
line.

2. Rename Layer 1 to scripts.

Skim Example 13-7 in its entirety first; then we’ll dissect it.

Example 13-7. An analog clock

// Create clock face and hands
attachMovie("clockFace", "clockFace_mc", 0);
attachMovie("hand", "secondHand_mc", 3);
attachMovie("hand", "minuteHand_mc", 2);
attachMovie("hand", "hourHand_mc", 1);

// Position and size the clock face
clockFace_mc._x = 275;
clockFace_mc._y = 200;
clockFace_mc._height = 150;
clockFace_mc._width = 150;

// Position, size, and color the clock hands
secondHand_mc._x = clockFace_mc._x;
secondHand_mc._y = clockFace_mc._y;
secondHand_mc._height = clockFace_mc._height / 2.2;
secondHandColor = new Color(secondHand_mc);
secondHandColor.setRGB(0xFFFFFF);
minuteHand_mc._x = clockFace_mc._x;
minuteHand_mc._y = clockFace_mc._y;
minuteHand_mc._height = clockFace_mc._height / 2.5;
hourHand_mc._x = clockFace_mc._x;
hourHand_mc._y = clockFace_mc._y;
hourHand_mc._height = clockFace_mc._height / 3.5;

// Update the rotation of hands with each passing frame
function updateClock () {
  var now = new Date( );
  var dayPercent = (now.getHours( ) > 12 ?
                    now.getHours( ) - 12 : now.getHours( )) / 12;

,ch13.7626  Page 369  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 13: Movie Clips

That’s a lot of code, so let’s review it.

We first attach the clockFace clip and assign it a depth of 0 (we want it to appear
behind our clock’s hands):

attachMovie("clockFace", "clockFace_mc", 0);

Next, we attach three instances of the hand symbol, assigning them the names
secondHand_mc, minuteHand_mc, and hourHand_mc. Each hand resides on its own layer
in the programmatically generated content stack above the main timeline. The
secondHand_mc clip (depth 3) sits on top of the minuteHand_mc clip (depth 2), which
sits on top of the hourHand_mc clip (depth 1):

attachMovie("hand", "secondHand_mc", 3);
attachMovie("hand", "minuteHand_mc", 2);
attachMovie("hand", "hourHand_mc", 1);

We want our clock centered—not in the top-left corner of the Stage—so, we center
the clockFace_mc clip on stage and make it larger using the _height and _width prop-
erties. In this example, we assume the movie size is the default (550 × 400 pixels),
but we could have used Stage.width and Stage.height to dynamically retrieve the
dimensions of the movie at runtime. As an exercise, use Stage.onResize() to keep the
clock centered even when the movie is resized.

clockFace_mc._x = 275;
clockFace_mc._y = 200;
clockFace_mc._height = 150;
clockFace_mc._width = 150;

Next, we move the secondHand_mc clip onto the clock and make it almost as long as
the radius of the clockFace_mc clip:

secondHand_mc._x = clockFace_mc._x;
secondHand_mc._y = clockFace_mc._y;
secondHand_mc._height = clockFace_mc._height / 2.2;

Remember that the line in the hand symbol is red, so all our hand instances thus far
are also red. To make our secondHand_mc clip stand out, we color it white using the
Color class. Note the use of the hexadecimal color value 0xFFFFFF (see the Color
Class in the Language Reference for more information on manipulating color):

// Create a new Color object to control secondHand_mc
secondHandColor = new Color(secondHand_mc);

  var hourPercent = now.getMinutes( )/60;
  var minutePercent = now.getSeconds( )/60;
  hourHand_mc._rotation = 360 * dayPercent + hourPercent * (360 / 12);
  minuteHand_mc._rotation = 360 * hourPercent;
  secondHand_mc._rotation = 360 * minutePercent;
}

// Update the clock every 100 milliseconds
setInterval(updateClock, 100);

Example 13-7. An analog clock (continued)

,ch13.7626  Page 370  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Building a Clock with Clips | 371

// Assign secondHand_mc the color white
secondHandColor.setRGB(0xFFFFFF);

Next, we set the position and size of the minuteHand_mc and hourHand_mc clips, just as
we did for the secondHand_mc clip:

// Place minuteHand_mc on top of clockFace_mc
minuteHand_mc._x = clockFace_mc._x;
minuteHand_mc._y = clockFace_mc._y;
// Make minuteHand_mc shorter than secondHand_mc
minuteHand_mc._height = clockFace_mc._height / 2.5;
// Place hourHand_mc on top of clockFace_mc
hourHand_mc._x = clockFace_mc._x;
hourHand_mc._y = clockFace_mc._y;
// Make hourHand_mc the shortest of all
hourHand_mc._height = clockFace_mc._height / 3.5;

Now we have to set the rotation of the hands on the clock to reflect the current time.
However, we don’t just want to set the rotation once. We want to set it repeatedly,
so that our clock hands animate over time. Therefore, we put our rotation code in a
function called updateClock(), which we’ll call periodically:

function updateClock () {
  // Store the current time in now
  var now = new Date( );

  // getHours() works on a 24-hour clock. If the current hour is greater
  // than 12, we subtract 12 to convert to a regular 12-hour clock.
  var dayPercent = (now.getHours( ) > 12 ?
                    now.getHours( ) - 12 : now.getHours( )) / 12;

  // Determine how many minutes of the current hour have passed, as a percentage
  var hourPercent = now.getMinutes( )/60;

  // Determine how many seconds of the current minute have passed, as a percentage
  var minutePercent = now.getSeconds( )/60;

  // Rotate the hands by the appropriate amount around the clock
  hourHand_mc._rotation = 360 * dayPercent + hourPercent * (360 / 12);
  minuteHand_mc._rotation = 360 * hourPercent;
  secondHand_mc._rotation = 360 * minutePercent;
}

The first task of updateClock() is to retrieve and store the current time. This is done
by creating an instance of the Date class and placing it in the local variable now. Next
we determine, as a percentage, how far around the clock each hand should be
placed—much like determining where to slice a pie. The current hour always repre-
sents some portion of 12, while the current minute and second always represent
some portion of 60. We assign the _rotation of each hand based on those percent-
ages. We calculate the hourHand_mc clip’s position to reflect not only the percent of
the day but also the percent of the current hour.

,ch13.7626  Page 371  Wednesday, December 4, 2002  12:48 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 13: Movie Clips

Our clock is essentially finished. All that’s left to do is call the updateClock() func-
tion with the following line of code, which refreshes the clock display every 100
milliseconds:

setInterval(updateClock, 100);

Test the movie to see if your clock works. If it doesn’t, compare it to the sample
clock .fla file provided at the online Code Depot, or check your code against
Example 13-7. Updating the clock 10 times per second should create a nice smooth
sweep of the second hand, but it may also be overkill (or a drain on performance of a
larger piece).

Reader Exercise: Modify Example 13-7 to update the clock only once per second,
and add a “tick-tock” sound synchronized with the second hand’s movement (which
should give the illusion of a nice firm snap).

Think of other ways to expand on the clock application: Can you draw the clock
programmatically with the Drawing API? Can you make the clock more portable by
turning it into a component? How about dynamically adding minute and hour mark-
ings on the clockFace_mc clip? Can you modify it to display different or multiple time
zones? Can you create a stopwatch, complete with a reset button?

Onward!
We’ve come so far that there’s not much more to move on to! Once you understand
objects and movie clips thoroughly, you can tackle most ActionScript projects on
your own. But there’s still some interesting ground ahead. Chapter 14 shows how to
create MovieClip subclasses and components, such as the UI Components shipped
with Flash MX.

,ch13.7626  Page 372  Wednesday, December 4, 2002  12:48 PM


